Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which set is a subset of \( I \) (the set of all isosceles triangles), let's analyze the properties of each given set:
1. Set \( E \) (Equilateral Triangles):
- An equilateral triangle is defined as a triangle with all three sides of equal length.
- For a triangle to be isosceles, it must have at least two sides of equal length.
- All equilateral triangles meet this criterion because in an equilateral triangle, all three sides are equal. Therefore, every equilateral triangle is also an isosceles triangle.
- Hence, \( E \subseteq I \).
2. Set \( S \) (Scalene Triangles):
- A scalene triangle has all sides of different lengths.
- An isosceles triangle has at least two sides of equal length.
- Because no scalene triangle can have two sides of equal length, the set of scalene triangles \( S \) cannot be a subset of \( I \).
- Hence, \( S \not\subseteq I \).
3. Set \( A \) (Acute Triangles):
- An acute triangle has all interior angles less than \(90^\circ\).
- An isosceles triangle could be acute, but it could also be right or obtuse.
- Not all acute triangles are isosceles. Acute triangles can be scalene as well.
- Therefore, \( A \) is not necessarily a subset of \( I \).
- Hence, \( A \not\subseteq I \).
4. Set \( R\) (Right Triangles):
- A right triangle has one \(90^\circ\) angle.
- A right triangle can also be isosceles if the other two sides (legs) are of equal length.
- But not all right triangles are isosceles. Right triangles can also be scalene.
- Therefore, \( R \) is not necessarily a subset of \( I \).
- Hence, \( R \not\subseteq I \).
Based on this analysis, the only correct statement is:
[tex]\[ E \subseteq I \][/tex]
Thus, the set of equilateral triangles \( E \) is a subset of \( I \) (the set of isosceles triangles). Therefore, the answer is:
[tex]\[ E \][/tex]
1. Set \( E \) (Equilateral Triangles):
- An equilateral triangle is defined as a triangle with all three sides of equal length.
- For a triangle to be isosceles, it must have at least two sides of equal length.
- All equilateral triangles meet this criterion because in an equilateral triangle, all three sides are equal. Therefore, every equilateral triangle is also an isosceles triangle.
- Hence, \( E \subseteq I \).
2. Set \( S \) (Scalene Triangles):
- A scalene triangle has all sides of different lengths.
- An isosceles triangle has at least two sides of equal length.
- Because no scalene triangle can have two sides of equal length, the set of scalene triangles \( S \) cannot be a subset of \( I \).
- Hence, \( S \not\subseteq I \).
3. Set \( A \) (Acute Triangles):
- An acute triangle has all interior angles less than \(90^\circ\).
- An isosceles triangle could be acute, but it could also be right or obtuse.
- Not all acute triangles are isosceles. Acute triangles can be scalene as well.
- Therefore, \( A \) is not necessarily a subset of \( I \).
- Hence, \( A \not\subseteq I \).
4. Set \( R\) (Right Triangles):
- A right triangle has one \(90^\circ\) angle.
- A right triangle can also be isosceles if the other two sides (legs) are of equal length.
- But not all right triangles are isosceles. Right triangles can also be scalene.
- Therefore, \( R \) is not necessarily a subset of \( I \).
- Hence, \( R \not\subseteq I \).
Based on this analysis, the only correct statement is:
[tex]\[ E \subseteq I \][/tex]
Thus, the set of equilateral triangles \( E \) is a subset of \( I \) (the set of isosceles triangles). Therefore, the answer is:
[tex]\[ E \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.