Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's go through the proof step-by-step:
1. Given:
- [tex]$ABC$[/tex] is a triangle.
2. To Prove:
- \( BC + AC > BA \)
3. Construction:
- Draw a perpendicular line segment from vertex \( C \) to segment \( AB \). Let the intersection point of \( AB \) and the perpendicular be \( E \).
4. Key Observations:
1. The line segment \( BE \) is the perpendicular distance from \( B \) to \( CE \). By the Shortest Distance Theorem, this perpendicular distance \( BE \) is the shortest distance from \( B \) to \( CE \).
2. Similarly, the line segment \( AE \) is the perpendicular distance from \( A \) to \( CE \), and is the shortest distance from \( A \) to \( CE \).
5. Inequalities:
- Since \( BC \) is a slant distance and \( BE \) is the perpendicular (shortest distance), we have:
[tex]\[ BC > BE \][/tex]
- Similarly, since \( AC \) is a slant distance and \( AE \) is the perpendicular (shortest distance), we have:
[tex]\[ AC > AE \][/tex]
6. Adding Inequalities:
- We can add the inequalities \( BC > BE \) and \( AC > AE \):
[tex]\[ BC + AC > BE + AE \][/tex]
7. Relationship of \( BE \) and \( AE \) to \( BA \):
- Since \( E \) is the intersection point of the perpendicular from \( C \) to \( AB \), and \( BE + AE \) forms a part of the line segment \( AB \), thus:
[tex]\[ BE + AE = BA \][/tex]
8. Substitution:
- Substituting \( BA \) for \( BE + AE \) in the inequality \( BC + AC > BE + AE \), we get:
[tex]\[ BC + AC > BA \][/tex]
Conclusion:
- Therefore, by the Shortest Distance Theorem and the triangle inequality, we have:
[tex]\[ BC + AC > BA \][/tex]
Thus, we have successfully proven that in triangle [tex]\( ABC \)[/tex], [tex]\( BC + AC > BA \)[/tex].
1. Given:
- [tex]$ABC$[/tex] is a triangle.
2. To Prove:
- \( BC + AC > BA \)
3. Construction:
- Draw a perpendicular line segment from vertex \( C \) to segment \( AB \). Let the intersection point of \( AB \) and the perpendicular be \( E \).
4. Key Observations:
1. The line segment \( BE \) is the perpendicular distance from \( B \) to \( CE \). By the Shortest Distance Theorem, this perpendicular distance \( BE \) is the shortest distance from \( B \) to \( CE \).
2. Similarly, the line segment \( AE \) is the perpendicular distance from \( A \) to \( CE \), and is the shortest distance from \( A \) to \( CE \).
5. Inequalities:
- Since \( BC \) is a slant distance and \( BE \) is the perpendicular (shortest distance), we have:
[tex]\[ BC > BE \][/tex]
- Similarly, since \( AC \) is a slant distance and \( AE \) is the perpendicular (shortest distance), we have:
[tex]\[ AC > AE \][/tex]
6. Adding Inequalities:
- We can add the inequalities \( BC > BE \) and \( AC > AE \):
[tex]\[ BC + AC > BE + AE \][/tex]
7. Relationship of \( BE \) and \( AE \) to \( BA \):
- Since \( E \) is the intersection point of the perpendicular from \( C \) to \( AB \), and \( BE + AE \) forms a part of the line segment \( AB \), thus:
[tex]\[ BE + AE = BA \][/tex]
8. Substitution:
- Substituting \( BA \) for \( BE + AE \) in the inequality \( BC + AC > BE + AE \), we get:
[tex]\[ BC + AC > BA \][/tex]
Conclusion:
- Therefore, by the Shortest Distance Theorem and the triangle inequality, we have:
[tex]\[ BC + AC > BA \][/tex]
Thus, we have successfully proven that in triangle [tex]\( ABC \)[/tex], [tex]\( BC + AC > BA \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.