Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To prove that in a \( 45^\circ-45^\circ-90^\circ \) triangle the hypotenuse is \(\sqrt{2}\) times the length of each leg, we are given that the triangle is an isosceles right triangle where the legs have equal length \(a\). The proof should proceed by using the Pythagorean theorem and then finding the relationship between the hypotenuse \(c\) and the legs \(a\).
Given:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
Combine like terms on the left side:
[tex]\[ 2a^2 = c^2 \][/tex]
We need to isolate \(c\). For this, we take the principal (positive) square root of both sides of the equation:
[tex]\[ \sqrt{2a^2} = \sqrt{c^2} \][/tex]
Since \(\sqrt{c^2} = c\) and \(\sqrt{2a^2} = \sqrt{2} \cdot \sqrt{a^2} = \sqrt{2} \cdot a\):
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
This final step shows that the length of the hypotenuse \(c\) is \(\sqrt{2}\) times the length of each leg \(a\). Hence, the correct step is to:
Determine the principal square root of both sides of the equation.
Given:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
Combine like terms on the left side:
[tex]\[ 2a^2 = c^2 \][/tex]
We need to isolate \(c\). For this, we take the principal (positive) square root of both sides of the equation:
[tex]\[ \sqrt{2a^2} = \sqrt{c^2} \][/tex]
Since \(\sqrt{c^2} = c\) and \(\sqrt{2a^2} = \sqrt{2} \cdot \sqrt{a^2} = \sqrt{2} \cdot a\):
[tex]\[ c = \sqrt{2} \cdot a \][/tex]
This final step shows that the length of the hypotenuse \(c\) is \(\sqrt{2}\) times the length of each leg \(a\). Hence, the correct step is to:
Determine the principal square root of both sides of the equation.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.