Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the slope of a line that is parallel to the line given by the equation \( y = \frac{1}{2}x + 3 \), we need to understand a few key concepts about linear equations and parallel lines.
1. Slope-Intercept Form: The equation of a line in slope-intercept form is given by:
[tex]\[ y = mx + b \][/tex]
where \( m \) represents the slope of the line and \( b \) represents the y-intercept.
2. Identifying the Slope: In the equation of the given line \( y = \frac{1}{2}x + 3 \), the slope \( m \) is the coefficient of \( x \). Therefore, the slope of the given line is:
[tex]\[ m = \frac{1}{2} \][/tex]
3. Parallel Lines and Slope: Parallel lines have identical slopes. This means that any line that is parallel to the original line will have the same slope as the original line.
4. Conclusion: Since the slope of the original line \( y = \frac{1}{2}x + 3 \) is \( \frac{1}{2} \), any line parallel to it will also have a slope of \( \frac{1}{2} \).
Therefore, the slope of a line that is parallel to \( y = \frac{1}{2}x + 3 \) is:
[tex]\[ \boxed{0.5} \][/tex]
1. Slope-Intercept Form: The equation of a line in slope-intercept form is given by:
[tex]\[ y = mx + b \][/tex]
where \( m \) represents the slope of the line and \( b \) represents the y-intercept.
2. Identifying the Slope: In the equation of the given line \( y = \frac{1}{2}x + 3 \), the slope \( m \) is the coefficient of \( x \). Therefore, the slope of the given line is:
[tex]\[ m = \frac{1}{2} \][/tex]
3. Parallel Lines and Slope: Parallel lines have identical slopes. This means that any line that is parallel to the original line will have the same slope as the original line.
4. Conclusion: Since the slope of the original line \( y = \frac{1}{2}x + 3 \) is \( \frac{1}{2} \), any line parallel to it will also have a slope of \( \frac{1}{2} \).
Therefore, the slope of a line that is parallel to \( y = \frac{1}{2}x + 3 \) is:
[tex]\[ \boxed{0.5} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.