Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the slope of a line that is parallel to the line given by the equation \( y = \frac{1}{2}x + 3 \), we need to understand a few key concepts about linear equations and parallel lines.
1. Slope-Intercept Form: The equation of a line in slope-intercept form is given by:
[tex]\[ y = mx + b \][/tex]
where \( m \) represents the slope of the line and \( b \) represents the y-intercept.
2. Identifying the Slope: In the equation of the given line \( y = \frac{1}{2}x + 3 \), the slope \( m \) is the coefficient of \( x \). Therefore, the slope of the given line is:
[tex]\[ m = \frac{1}{2} \][/tex]
3. Parallel Lines and Slope: Parallel lines have identical slopes. This means that any line that is parallel to the original line will have the same slope as the original line.
4. Conclusion: Since the slope of the original line \( y = \frac{1}{2}x + 3 \) is \( \frac{1}{2} \), any line parallel to it will also have a slope of \( \frac{1}{2} \).
Therefore, the slope of a line that is parallel to \( y = \frac{1}{2}x + 3 \) is:
[tex]\[ \boxed{0.5} \][/tex]
1. Slope-Intercept Form: The equation of a line in slope-intercept form is given by:
[tex]\[ y = mx + b \][/tex]
where \( m \) represents the slope of the line and \( b \) represents the y-intercept.
2. Identifying the Slope: In the equation of the given line \( y = \frac{1}{2}x + 3 \), the slope \( m \) is the coefficient of \( x \). Therefore, the slope of the given line is:
[tex]\[ m = \frac{1}{2} \][/tex]
3. Parallel Lines and Slope: Parallel lines have identical slopes. This means that any line that is parallel to the original line will have the same slope as the original line.
4. Conclusion: Since the slope of the original line \( y = \frac{1}{2}x + 3 \) is \( \frac{1}{2} \), any line parallel to it will also have a slope of \( \frac{1}{2} \).
Therefore, the slope of a line that is parallel to \( y = \frac{1}{2}x + 3 \) is:
[tex]\[ \boxed{0.5} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.