Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine all the discontinuities of the given function \( f(x) \), we need to analyze the behavior of the function at the boundaries where the definition changes. The critical points to check are \( x = -4 \), \( x = -2 \), and \( x = 4 \).
1. At \( x = -4 \):
- For \( x < -4 \), \( f(x) = 4 \).
- For \( -4 \leq x \leq -2 \), \( f(x) = (x + 2)^2 \).
To check if \( f(x) \) is continuous at \( x = -4 \), we need to compare the limits approaching from both sides:
- As \( x \) approaches \(-4\) from the right:
[tex]\[ \lim_{x \to -4^+} f(x) = (-4 + 2)^2 = 4 \][/tex]
- As \( x \) approaches \(-4\) from the left:
[tex]\[ \lim_{x \to -4^-} f(x) = 4 \][/tex]
The values match, thus \( f(x) \) is continuous at \( x = -4 \).
2. At \( x = -2 \):
- For \( -4 \leq x \leq -2 \), \( f(x) = (x + 2)^2 \).
- For \( -2 < x < 4 \), \( f(x) = -\frac{1}{2}x + 1 \).
To check if \( f(x) \) is continuous at \( x = -2 \), we need to compare the limits approaching from both sides:
- As \( x \) approaches \(-2\) from the right:
[tex]\[ \lim_{x \to -2^+} f(x) = -\frac{1}{2}(-2) + 1 = 2 \][/tex]
- As \( x \) approaches \(-2\) from the left:
[tex]\[ \lim_{x \to -2^-} f(x) = (-2 + 2)^2 = 0 \][/tex]
Since \( 0 \neq 2 \), \( f(x) \) has a jump discontinuity at \( x = -2 \).
3. At \( x = 4 \):
- For \( -2 < x < 4 \), \( f(x) = -\frac{1}{2}x + 1 \).
- For \( x > 4 \), \( f(x) = -1 \).
To check if \( f(x) \) is continuous at \( x = 4 \), we need to compare the limits approaching from both sides:
- As \( x \) approaches \( 4 \) from the right:
[tex]\[ \lim_{x \to 4^+} f(x) = -1 \][/tex]
- As \( x \) approaches \( 4 \) from the left:
[tex]\[ \lim_{x \to 4^-} f(x) = -\frac{1}{2}(4) + 1 = -1 \][/tex]
The values match, thus \( f(x) \) is continuous at \( x = 4 \).
Considering all necessary points, the function \( f(x) \) has a jump discontinuity at \( x = -2 \) and no discontinuities at \( x = -4 \) and \( x = 4 \).
Thus, the most accurate list of discontinuities for the function \( f(x) \) would be:
- Jump discontinuity at \( x = -2 \).
Therefore, the correct option is:
```
jump discontinuity at x=-2
```
1. At \( x = -4 \):
- For \( x < -4 \), \( f(x) = 4 \).
- For \( -4 \leq x \leq -2 \), \( f(x) = (x + 2)^2 \).
To check if \( f(x) \) is continuous at \( x = -4 \), we need to compare the limits approaching from both sides:
- As \( x \) approaches \(-4\) from the right:
[tex]\[ \lim_{x \to -4^+} f(x) = (-4 + 2)^2 = 4 \][/tex]
- As \( x \) approaches \(-4\) from the left:
[tex]\[ \lim_{x \to -4^-} f(x) = 4 \][/tex]
The values match, thus \( f(x) \) is continuous at \( x = -4 \).
2. At \( x = -2 \):
- For \( -4 \leq x \leq -2 \), \( f(x) = (x + 2)^2 \).
- For \( -2 < x < 4 \), \( f(x) = -\frac{1}{2}x + 1 \).
To check if \( f(x) \) is continuous at \( x = -2 \), we need to compare the limits approaching from both sides:
- As \( x \) approaches \(-2\) from the right:
[tex]\[ \lim_{x \to -2^+} f(x) = -\frac{1}{2}(-2) + 1 = 2 \][/tex]
- As \( x \) approaches \(-2\) from the left:
[tex]\[ \lim_{x \to -2^-} f(x) = (-2 + 2)^2 = 0 \][/tex]
Since \( 0 \neq 2 \), \( f(x) \) has a jump discontinuity at \( x = -2 \).
3. At \( x = 4 \):
- For \( -2 < x < 4 \), \( f(x) = -\frac{1}{2}x + 1 \).
- For \( x > 4 \), \( f(x) = -1 \).
To check if \( f(x) \) is continuous at \( x = 4 \), we need to compare the limits approaching from both sides:
- As \( x \) approaches \( 4 \) from the right:
[tex]\[ \lim_{x \to 4^+} f(x) = -1 \][/tex]
- As \( x \) approaches \( 4 \) from the left:
[tex]\[ \lim_{x \to 4^-} f(x) = -\frac{1}{2}(4) + 1 = -1 \][/tex]
The values match, thus \( f(x) \) is continuous at \( x = 4 \).
Considering all necessary points, the function \( f(x) \) has a jump discontinuity at \( x = -2 \) and no discontinuities at \( x = -4 \) and \( x = 4 \).
Thus, the most accurate list of discontinuities for the function \( f(x) \) would be:
- Jump discontinuity at \( x = -2 \).
Therefore, the correct option is:
```
jump discontinuity at x=-2
```
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.