Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve the system of equations using the steps provided by both Tyler and Han to show that both methods yield the same solution.
The system of equations is:
[tex]\[ \begin{cases} x + 3y = -5 \\ 9x + 3y = 3 \end{cases} \][/tex]
### Solution via Tyler's Method
Step 1: Isolate \( x \) in the first equation.
[tex]\[ x + 3y = -5 \\ x = -5 - 3y \][/tex]
Step 2: Substitute \( x = -5 - 3y \) into the second equation.
[tex]\[ 9(-5 - 3y) + 3y = 3 \\ -45 - 27y + 3y = 3 \\ -45 - 24y = 3 \\ -24y = 48 \\ y = -2 \][/tex]
Step 3: Substitute \( y = -2 \) back into \( x = -5 - 3y \) to find \( x \).
[tex]\[ x = -5 - 3(-2) \\ x = -5 + 6 \\ x = 1 \][/tex]
So, the solution using Tyler's method is \( (x, y) = (1, -2) \).
### Solution via Han's Method
Step 1: Isolate \( 3y \) in the first equation.
[tex]\[ x + 3y = -5 \\ 3y = -5 - x \][/tex]
Step 2: Express \( y \) in terms of \( x \).
[tex]\[ 3y = -5 - x \\ y = \frac{-5 - x}{3} \][/tex]
Step 3: Substitute \( y = \frac{-5 - x}{3} \) into the second equation.
[tex]\[ 9x + 3\left(\frac{-5 - x}{3}\right) = 3 \\ 9x - 5 - x = 3 \\ 8x - 5 = 3 \\ 8x = 8 \\ x = 1 \][/tex]
Step 4: Substitute \( x = 1 \) back into \( y = \frac{-5 - x}{3} \) to find \( y \).
[tex]\[ y = \frac{-5 - 1}{3} \\ y = \frac{-6}{3} \\ y = -2 \][/tex]
So, the solution using Han's method is \( (x, y) = (1, -2) \).
### Conclusion:
Both Tyler's and Han's methods yield the same solution for the system of equations:
[tex]\[ \boxed{(x, y) = (1, -2)} \][/tex]
The system of equations is:
[tex]\[ \begin{cases} x + 3y = -5 \\ 9x + 3y = 3 \end{cases} \][/tex]
### Solution via Tyler's Method
Step 1: Isolate \( x \) in the first equation.
[tex]\[ x + 3y = -5 \\ x = -5 - 3y \][/tex]
Step 2: Substitute \( x = -5 - 3y \) into the second equation.
[tex]\[ 9(-5 - 3y) + 3y = 3 \\ -45 - 27y + 3y = 3 \\ -45 - 24y = 3 \\ -24y = 48 \\ y = -2 \][/tex]
Step 3: Substitute \( y = -2 \) back into \( x = -5 - 3y \) to find \( x \).
[tex]\[ x = -5 - 3(-2) \\ x = -5 + 6 \\ x = 1 \][/tex]
So, the solution using Tyler's method is \( (x, y) = (1, -2) \).
### Solution via Han's Method
Step 1: Isolate \( 3y \) in the first equation.
[tex]\[ x + 3y = -5 \\ 3y = -5 - x \][/tex]
Step 2: Express \( y \) in terms of \( x \).
[tex]\[ 3y = -5 - x \\ y = \frac{-5 - x}{3} \][/tex]
Step 3: Substitute \( y = \frac{-5 - x}{3} \) into the second equation.
[tex]\[ 9x + 3\left(\frac{-5 - x}{3}\right) = 3 \\ 9x - 5 - x = 3 \\ 8x - 5 = 3 \\ 8x = 8 \\ x = 1 \][/tex]
Step 4: Substitute \( x = 1 \) back into \( y = \frac{-5 - x}{3} \) to find \( y \).
[tex]\[ y = \frac{-5 - 1}{3} \\ y = \frac{-6}{3} \\ y = -2 \][/tex]
So, the solution using Han's method is \( (x, y) = (1, -2) \).
### Conclusion:
Both Tyler's and Han's methods yield the same solution for the system of equations:
[tex]\[ \boxed{(x, y) = (1, -2)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.