Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the system of equations using the steps provided by both Tyler and Han to show that both methods yield the same solution.
The system of equations is:
[tex]\[ \begin{cases} x + 3y = -5 \\ 9x + 3y = 3 \end{cases} \][/tex]
### Solution via Tyler's Method
Step 1: Isolate \( x \) in the first equation.
[tex]\[ x + 3y = -5 \\ x = -5 - 3y \][/tex]
Step 2: Substitute \( x = -5 - 3y \) into the second equation.
[tex]\[ 9(-5 - 3y) + 3y = 3 \\ -45 - 27y + 3y = 3 \\ -45 - 24y = 3 \\ -24y = 48 \\ y = -2 \][/tex]
Step 3: Substitute \( y = -2 \) back into \( x = -5 - 3y \) to find \( x \).
[tex]\[ x = -5 - 3(-2) \\ x = -5 + 6 \\ x = 1 \][/tex]
So, the solution using Tyler's method is \( (x, y) = (1, -2) \).
### Solution via Han's Method
Step 1: Isolate \( 3y \) in the first equation.
[tex]\[ x + 3y = -5 \\ 3y = -5 - x \][/tex]
Step 2: Express \( y \) in terms of \( x \).
[tex]\[ 3y = -5 - x \\ y = \frac{-5 - x}{3} \][/tex]
Step 3: Substitute \( y = \frac{-5 - x}{3} \) into the second equation.
[tex]\[ 9x + 3\left(\frac{-5 - x}{3}\right) = 3 \\ 9x - 5 - x = 3 \\ 8x - 5 = 3 \\ 8x = 8 \\ x = 1 \][/tex]
Step 4: Substitute \( x = 1 \) back into \( y = \frac{-5 - x}{3} \) to find \( y \).
[tex]\[ y = \frac{-5 - 1}{3} \\ y = \frac{-6}{3} \\ y = -2 \][/tex]
So, the solution using Han's method is \( (x, y) = (1, -2) \).
### Conclusion:
Both Tyler's and Han's methods yield the same solution for the system of equations:
[tex]\[ \boxed{(x, y) = (1, -2)} \][/tex]
The system of equations is:
[tex]\[ \begin{cases} x + 3y = -5 \\ 9x + 3y = 3 \end{cases} \][/tex]
### Solution via Tyler's Method
Step 1: Isolate \( x \) in the first equation.
[tex]\[ x + 3y = -5 \\ x = -5 - 3y \][/tex]
Step 2: Substitute \( x = -5 - 3y \) into the second equation.
[tex]\[ 9(-5 - 3y) + 3y = 3 \\ -45 - 27y + 3y = 3 \\ -45 - 24y = 3 \\ -24y = 48 \\ y = -2 \][/tex]
Step 3: Substitute \( y = -2 \) back into \( x = -5 - 3y \) to find \( x \).
[tex]\[ x = -5 - 3(-2) \\ x = -5 + 6 \\ x = 1 \][/tex]
So, the solution using Tyler's method is \( (x, y) = (1, -2) \).
### Solution via Han's Method
Step 1: Isolate \( 3y \) in the first equation.
[tex]\[ x + 3y = -5 \\ 3y = -5 - x \][/tex]
Step 2: Express \( y \) in terms of \( x \).
[tex]\[ 3y = -5 - x \\ y = \frac{-5 - x}{3} \][/tex]
Step 3: Substitute \( y = \frac{-5 - x}{3} \) into the second equation.
[tex]\[ 9x + 3\left(\frac{-5 - x}{3}\right) = 3 \\ 9x - 5 - x = 3 \\ 8x - 5 = 3 \\ 8x = 8 \\ x = 1 \][/tex]
Step 4: Substitute \( x = 1 \) back into \( y = \frac{-5 - x}{3} \) to find \( y \).
[tex]\[ y = \frac{-5 - 1}{3} \\ y = \frac{-6}{3} \\ y = -2 \][/tex]
So, the solution using Han's method is \( (x, y) = (1, -2) \).
### Conclusion:
Both Tyler's and Han's methods yield the same solution for the system of equations:
[tex]\[ \boxed{(x, y) = (1, -2)} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.