Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this hypothesis testing problem, let's go through it step-by-step:
### Step 1: State the Hypotheses
Given the problem, we need to test the claim that the mean of the differences in heights (president's height minus opponent's height) is greater than \(0 \text{ cm}\).
The hypotheses are stated as:
- Null Hypothesis (\(H_0\)): \(\mu_d = 0 \text{ cm}\)
- Alternative Hypothesis (\(H_1\)): \(\mu_d > 0 \text{ cm}\)
### Step 2: Identify the Test Statistic
We are using the sample data:
[tex]\[ \text{Heights of Presidents (cm)}: [193, 170, 166, 180, 198, 180] \][/tex]
[tex]\[ \text{Heights of Main Opponents (cm)}: [176, 180, 181, 183, 193, 178] \][/tex]
Firstly, we find the differences between the heights of presidents and their main opponents:
[tex]\[ \text{Differences (cm)} = [193-176, 170-180, 166-181, 180-183, 198-193, 180-178] \][/tex]
[tex]\[ = [17, -10, -15, -3, 5, 2] \][/tex]
These differences form our sample.
#### Sample Mean of the Differences (\(\bar{d}\))
The sample mean difference is:
[tex]\[ \bar{d} = \frac{17 + (-10) + (-15) + (-3) + 5 + 2}{6} \approx -0.67 \][/tex]
#### Sample Standard Deviation of the Differences (\(s_d\))
The standard deviation of the differences is approximately:
[tex]\[ s_d \approx 11.40 \][/tex]
#### Sample Size (\(n\))
The number of data points is:
[tex]\[ n = 6 \][/tex]
Now we calculate the test statistic using the formula for the t-statistic:
[tex]\[ t = \frac{\bar{d} - \mu_{d_0}}{s_d / \sqrt{n}} \][/tex]
Where:
- \(\bar{d}\) is the sample mean of the differences,
- \(\mu_{d_0}\) is the hypothesized population mean difference (which is 0),
- \(s_d\) is the sample standard deviation of the differences,
- \(n\) is the sample size.
By substituting the values, we get:
[tex]\[ t = \frac{-0.67 - 0}{11.40 / \sqrt{6}} \approx -0.14 \][/tex]
### Conclusion
So, the test statistic is:
[tex]\[ t \approx -0.14 \][/tex]
Therefore, the completed solution is:
[tex]\[ t = -0.14 \][/tex]
So, in summary, the test statistic for this hypothesis test is approximately [tex]\( t = -0.14 \)[/tex].
### Step 1: State the Hypotheses
Given the problem, we need to test the claim that the mean of the differences in heights (president's height minus opponent's height) is greater than \(0 \text{ cm}\).
The hypotheses are stated as:
- Null Hypothesis (\(H_0\)): \(\mu_d = 0 \text{ cm}\)
- Alternative Hypothesis (\(H_1\)): \(\mu_d > 0 \text{ cm}\)
### Step 2: Identify the Test Statistic
We are using the sample data:
[tex]\[ \text{Heights of Presidents (cm)}: [193, 170, 166, 180, 198, 180] \][/tex]
[tex]\[ \text{Heights of Main Opponents (cm)}: [176, 180, 181, 183, 193, 178] \][/tex]
Firstly, we find the differences between the heights of presidents and their main opponents:
[tex]\[ \text{Differences (cm)} = [193-176, 170-180, 166-181, 180-183, 198-193, 180-178] \][/tex]
[tex]\[ = [17, -10, -15, -3, 5, 2] \][/tex]
These differences form our sample.
#### Sample Mean of the Differences (\(\bar{d}\))
The sample mean difference is:
[tex]\[ \bar{d} = \frac{17 + (-10) + (-15) + (-3) + 5 + 2}{6} \approx -0.67 \][/tex]
#### Sample Standard Deviation of the Differences (\(s_d\))
The standard deviation of the differences is approximately:
[tex]\[ s_d \approx 11.40 \][/tex]
#### Sample Size (\(n\))
The number of data points is:
[tex]\[ n = 6 \][/tex]
Now we calculate the test statistic using the formula for the t-statistic:
[tex]\[ t = \frac{\bar{d} - \mu_{d_0}}{s_d / \sqrt{n}} \][/tex]
Where:
- \(\bar{d}\) is the sample mean of the differences,
- \(\mu_{d_0}\) is the hypothesized population mean difference (which is 0),
- \(s_d\) is the sample standard deviation of the differences,
- \(n\) is the sample size.
By substituting the values, we get:
[tex]\[ t = \frac{-0.67 - 0}{11.40 / \sqrt{6}} \approx -0.14 \][/tex]
### Conclusion
So, the test statistic is:
[tex]\[ t \approx -0.14 \][/tex]
Therefore, the completed solution is:
[tex]\[ t = -0.14 \][/tex]
So, in summary, the test statistic for this hypothesis test is approximately [tex]\( t = -0.14 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.