Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
If the vectors \(\overrightarrow{P Q}\) and \(\overrightarrow{R S}\) intersect to form four right angles, we need to determine the correct relationship between these vectors. Here is a thorough step-by-step explanation:
1. Understanding Four Right Angles Intersecting:
- When two lines or vectors intersect to form four right angles (90 degrees each), it implies that each pair of angles formed around the intersection point is orthogonal.
- In simpler terms, if \(\overrightarrow{P Q}\) intersects \(\overrightarrow{R S}\) and creates right angles, then \(\overrightarrow{P Q}\) must be perpendicular to \(\overrightarrow{R S}\).
2. Analyzing the Given Statements:
- Option A: \(\overrightarrow{Q Q}\) and \(\overrightarrow{R S}\) are skew.
- This is incorrect terminology and doesn't make sense in this context. "\(\overrightarrow{Q Q}\)" seems to be a typographical error or not relevant for our vectors.
- Option B: \(\overrightarrow{P Q} \perp \overleftrightarrow{R S}\)
- This means that \(\overrightarrow{P Q}\) is perpendicular to \(\overrightarrow{R S}\). Given our understanding that the vectors intersect to form right angles, this statement is correct.
- Option C: \(\overrightarrow{P Q} = \overrightarrow{R S}\)
- This states that the vectors are equal, which cannot be concluded just from the intersection forming right angles. They only need to be perpendicular, not equal.
- Option D: \(\overrightarrow{P Q}\) and \(\overrightarrow{R S}\) are parallel.
- This statement is incorrect because if they were parallel, they could not intersect to form four right angles.
3. Conclusion:
- The correct statement derived from the given situation is that \(\overrightarrow{P Q}\) is perpendicular to \(\overrightarrow{R S}\).
Thus, the correct choice is:
B. [tex]\(\overrightarrow{P Q} \perp \overleftrightarrow{R S}\)[/tex]
1. Understanding Four Right Angles Intersecting:
- When two lines or vectors intersect to form four right angles (90 degrees each), it implies that each pair of angles formed around the intersection point is orthogonal.
- In simpler terms, if \(\overrightarrow{P Q}\) intersects \(\overrightarrow{R S}\) and creates right angles, then \(\overrightarrow{P Q}\) must be perpendicular to \(\overrightarrow{R S}\).
2. Analyzing the Given Statements:
- Option A: \(\overrightarrow{Q Q}\) and \(\overrightarrow{R S}\) are skew.
- This is incorrect terminology and doesn't make sense in this context. "\(\overrightarrow{Q Q}\)" seems to be a typographical error or not relevant for our vectors.
- Option B: \(\overrightarrow{P Q} \perp \overleftrightarrow{R S}\)
- This means that \(\overrightarrow{P Q}\) is perpendicular to \(\overrightarrow{R S}\). Given our understanding that the vectors intersect to form right angles, this statement is correct.
- Option C: \(\overrightarrow{P Q} = \overrightarrow{R S}\)
- This states that the vectors are equal, which cannot be concluded just from the intersection forming right angles. They only need to be perpendicular, not equal.
- Option D: \(\overrightarrow{P Q}\) and \(\overrightarrow{R S}\) are parallel.
- This statement is incorrect because if they were parallel, they could not intersect to form four right angles.
3. Conclusion:
- The correct statement derived from the given situation is that \(\overrightarrow{P Q}\) is perpendicular to \(\overrightarrow{R S}\).
Thus, the correct choice is:
B. [tex]\(\overrightarrow{P Q} \perp \overleftrightarrow{R S}\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.