Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's start with part (a) and then move on to part (b).
### Part (a): Expressing the Half-Life \( \lambda \) in Terms of \( k \)
The half-life \( \lambda \) is defined as the time it takes for the amount of the substance to decrease to half of its initial amount \( y_0 \). The decay of the substance follows the equation:
[tex]\[ y = y_0 e^{-kt} \][/tex]
1. By definition, when \( t = \lambda \), the amount \( y \) is half of \( y_0 \), so:
[tex]\[ y = \frac{y_0}{2} \][/tex]
2. Substituting \( y \) and \( t = \lambda \) into the decay equation:
[tex]\[ \frac{y_0}{2} = y_0 e^{-k \lambda} \][/tex]
3. Divide both sides by \( y_0 \) to simplify:
[tex]\[ \frac{1}{2} = e^{-k \lambda} \][/tex]
4. Take the natural logarithm on both sides to solve for \( \lambda \):
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln\left(e^{-k \lambda}\right) \][/tex]
[tex]\[ \ln\left(\frac{1}{2}\right) = -k \lambda \][/tex]
5. Simplify \( \ln\left(\frac{1}{2}\right) \):
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = 0 - \ln(2) = -\ln(2) \][/tex]
6. Substitute and solve for \( \lambda \):
[tex]\[ -\ln(2) = -k \lambda \][/tex]
[tex]\[ \lambda = \frac{\ln(2)}{k} \][/tex]
Thus, the half-life \( \lambda \) in terms of \( k \) is:
[tex]\[ \lambda = \frac{\ln(2)}{k} \][/tex]
### Part (b): Verifying the Amount at Time \( t_1 + \lambda \)
Now, we need to verify that the amount at time \( t_1 + \lambda \) is half of the amount at time \( t_1 \).
1. Suppose at time \( t_1 \), the amount is \( y_1 \). Then:
[tex]\[ y_1 = y_0 e^{-k t_1} \][/tex]
2. We want to find the amount \( y \) at time \( t = t_1 + \lambda \):
[tex]\[ y = y_0 e^{-k (t_1 + \lambda)} \][/tex]
3. Substitute \( \lambda = \frac{\ln(2)}{k} \):
[tex]\[ y = y_0 e^{-k \left(t_1 + \frac{\ln(2)}{k}\right)} \][/tex]
4. Simplify the exponent:
[tex]\[ y = y_0 e^{-k t_1} e^{-k \frac{\ln(2)}{k}} \][/tex]
[tex]\[ y = y_0 e^{-k t_1} e^{-\ln(2)} \][/tex]
5. Since \( e^{-\ln(2)} = \frac{1}{e^{\ln(2)}} = \frac{1}{2} \):
[tex]\[ y = y_0 e^{-k t_1} \cdot \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2} y_0 e^{-k t_1} \][/tex]
6. Recall that \( y_0 e^{-k t_1} = y_1 \):
[tex]\[ y = \frac{1}{2} y_1 \][/tex]
Therefore, at time \( t_1 + \lambda \), the amount will be half of the amount at time \( t_1 \):
[tex]\[ y = \frac{y_1}{2} \][/tex]
This confirms that the amount at time [tex]\( t_1 + \lambda \)[/tex] is indeed [tex]\( \frac{y_1}{2} \)[/tex], no matter what [tex]\( t_1 \)[/tex] is.
### Part (a): Expressing the Half-Life \( \lambda \) in Terms of \( k \)
The half-life \( \lambda \) is defined as the time it takes for the amount of the substance to decrease to half of its initial amount \( y_0 \). The decay of the substance follows the equation:
[tex]\[ y = y_0 e^{-kt} \][/tex]
1. By definition, when \( t = \lambda \), the amount \( y \) is half of \( y_0 \), so:
[tex]\[ y = \frac{y_0}{2} \][/tex]
2. Substituting \( y \) and \( t = \lambda \) into the decay equation:
[tex]\[ \frac{y_0}{2} = y_0 e^{-k \lambda} \][/tex]
3. Divide both sides by \( y_0 \) to simplify:
[tex]\[ \frac{1}{2} = e^{-k \lambda} \][/tex]
4. Take the natural logarithm on both sides to solve for \( \lambda \):
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln\left(e^{-k \lambda}\right) \][/tex]
[tex]\[ \ln\left(\frac{1}{2}\right) = -k \lambda \][/tex]
5. Simplify \( \ln\left(\frac{1}{2}\right) \):
[tex]\[ \ln\left(\frac{1}{2}\right) = \ln(1) - \ln(2) = 0 - \ln(2) = -\ln(2) \][/tex]
6. Substitute and solve for \( \lambda \):
[tex]\[ -\ln(2) = -k \lambda \][/tex]
[tex]\[ \lambda = \frac{\ln(2)}{k} \][/tex]
Thus, the half-life \( \lambda \) in terms of \( k \) is:
[tex]\[ \lambda = \frac{\ln(2)}{k} \][/tex]
### Part (b): Verifying the Amount at Time \( t_1 + \lambda \)
Now, we need to verify that the amount at time \( t_1 + \lambda \) is half of the amount at time \( t_1 \).
1. Suppose at time \( t_1 \), the amount is \( y_1 \). Then:
[tex]\[ y_1 = y_0 e^{-k t_1} \][/tex]
2. We want to find the amount \( y \) at time \( t = t_1 + \lambda \):
[tex]\[ y = y_0 e^{-k (t_1 + \lambda)} \][/tex]
3. Substitute \( \lambda = \frac{\ln(2)}{k} \):
[tex]\[ y = y_0 e^{-k \left(t_1 + \frac{\ln(2)}{k}\right)} \][/tex]
4. Simplify the exponent:
[tex]\[ y = y_0 e^{-k t_1} e^{-k \frac{\ln(2)}{k}} \][/tex]
[tex]\[ y = y_0 e^{-k t_1} e^{-\ln(2)} \][/tex]
5. Since \( e^{-\ln(2)} = \frac{1}{e^{\ln(2)}} = \frac{1}{2} \):
[tex]\[ y = y_0 e^{-k t_1} \cdot \frac{1}{2} \][/tex]
[tex]\[ y = \frac{1}{2} y_0 e^{-k t_1} \][/tex]
6. Recall that \( y_0 e^{-k t_1} = y_1 \):
[tex]\[ y = \frac{1}{2} y_1 \][/tex]
Therefore, at time \( t_1 + \lambda \), the amount will be half of the amount at time \( t_1 \):
[tex]\[ y = \frac{y_1}{2} \][/tex]
This confirms that the amount at time [tex]\( t_1 + \lambda \)[/tex] is indeed [tex]\( \frac{y_1}{2} \)[/tex], no matter what [tex]\( t_1 \)[/tex] is.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.