Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of \( x \), we need to look at the angles related to the cut corner of the rectangle when it transforms into a trapezoid.
Let's break down the problem:
1. Understanding the Angles in a Rectangle:
- A rectangle has four right angles, each measuring \( 90^\circ \).
- The sum of the interior angles in a rectangle is \( 360^\circ \).
2. Effect of Cutting a Corner:
- When a corner of the rectangle is cut off, one of the \( 90^\circ \) angles is effectively removed.
- The new angles formed by this cut must add up to \( 90^\circ \) to maintain the overall geometry.
3. Sum of Angles in a Trapezoid:
- The resulting shape is a trapezoid. A trapezoid, like any quadrilateral, has angles that sum up to \( 360^\circ \).
4. Forming the New Angle:
- Consider what happens to the angles around the cut corner.
- The sum of the angles around the position where the corner was cut must still add up to \( 360^\circ \) to keep the shape closed.
Given the choices and understanding that the new angles should sum up properly, the angle \( x \) created by the cutting of the corner is:
[tex]\[ x = \boxed{135^\circ} \][/tex]
Let's break down the problem:
1. Understanding the Angles in a Rectangle:
- A rectangle has four right angles, each measuring \( 90^\circ \).
- The sum of the interior angles in a rectangle is \( 360^\circ \).
2. Effect of Cutting a Corner:
- When a corner of the rectangle is cut off, one of the \( 90^\circ \) angles is effectively removed.
- The new angles formed by this cut must add up to \( 90^\circ \) to maintain the overall geometry.
3. Sum of Angles in a Trapezoid:
- The resulting shape is a trapezoid. A trapezoid, like any quadrilateral, has angles that sum up to \( 360^\circ \).
4. Forming the New Angle:
- Consider what happens to the angles around the cut corner.
- The sum of the angles around the position where the corner was cut must still add up to \( 360^\circ \) to keep the shape closed.
Given the choices and understanding that the new angles should sum up properly, the angle \( x \) created by the cutting of the corner is:
[tex]\[ x = \boxed{135^\circ} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.