Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of \( x \), we need to look at the angles related to the cut corner of the rectangle when it transforms into a trapezoid.
Let's break down the problem:
1. Understanding the Angles in a Rectangle:
- A rectangle has four right angles, each measuring \( 90^\circ \).
- The sum of the interior angles in a rectangle is \( 360^\circ \).
2. Effect of Cutting a Corner:
- When a corner of the rectangle is cut off, one of the \( 90^\circ \) angles is effectively removed.
- The new angles formed by this cut must add up to \( 90^\circ \) to maintain the overall geometry.
3. Sum of Angles in a Trapezoid:
- The resulting shape is a trapezoid. A trapezoid, like any quadrilateral, has angles that sum up to \( 360^\circ \).
4. Forming the New Angle:
- Consider what happens to the angles around the cut corner.
- The sum of the angles around the position where the corner was cut must still add up to \( 360^\circ \) to keep the shape closed.
Given the choices and understanding that the new angles should sum up properly, the angle \( x \) created by the cutting of the corner is:
[tex]\[ x = \boxed{135^\circ} \][/tex]
Let's break down the problem:
1. Understanding the Angles in a Rectangle:
- A rectangle has four right angles, each measuring \( 90^\circ \).
- The sum of the interior angles in a rectangle is \( 360^\circ \).
2. Effect of Cutting a Corner:
- When a corner of the rectangle is cut off, one of the \( 90^\circ \) angles is effectively removed.
- The new angles formed by this cut must add up to \( 90^\circ \) to maintain the overall geometry.
3. Sum of Angles in a Trapezoid:
- The resulting shape is a trapezoid. A trapezoid, like any quadrilateral, has angles that sum up to \( 360^\circ \).
4. Forming the New Angle:
- Consider what happens to the angles around the cut corner.
- The sum of the angles around the position where the corner was cut must still add up to \( 360^\circ \) to keep the shape closed.
Given the choices and understanding that the new angles should sum up properly, the angle \( x \) created by the cutting of the corner is:
[tex]\[ x = \boxed{135^\circ} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.