Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine if the diagonals of square [tex]\( PQRS \)[/tex] are perpendicular bisectors of each other, let’s analyze the given information step by step.
### Step 1: Verify Perpendicularity
1. Slope of Diagonals:
We are given:
- The slope of [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
To confirm that these diagonals are perpendicular, their slopes should be negative reciprocals of each other. Specifically, the product of the slopes of perpendicular lines is [tex]\(-1\)[/tex].
[tex]\[ 7 \times \left(-\frac{1}{7}\right) = -1 \][/tex]
Since this condition is satisfied, the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular.
### Step 2: Verify Bisecting Each Other
2. Midpoint of Diagonals:
We are given that the midpoint of both diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
To confirm that the diagonals bisect each other, they must have the same midpoint.
Given:
- Midpoint of [tex]\(\overline{RP}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
- Midpoint of [tex]\(\overline{SQ}\)[/tex] is also [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
Since both diagonals share the same midpoint, this confirms that they bisect each other.
### Conclusion
Since the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular (their slopes are negative reciprocals) and they bisect each other (same midpoint), we can conclude that:
- The diagonals of square [tex]\( PQRS \)[/tex] are both perpendicular and bisectors of each other.
Therefore, the statement that proves the diagonals of square [tex]\( PQRS \)[/tex] are perpendicular bisectors of each other is verified by:
[tex]\[ \textrm{The slopes of the diagonals are negative reciprocals, and both diagonals have the same midpoint.} \][/tex]
Thus, the correct conclusion is that the diagonals of square [tex]\( PQRS \)[/tex] are indeed perpendicular bisectors of each other.
### Step 1: Verify Perpendicularity
1. Slope of Diagonals:
We are given:
- The slope of [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
To confirm that these diagonals are perpendicular, their slopes should be negative reciprocals of each other. Specifically, the product of the slopes of perpendicular lines is [tex]\(-1\)[/tex].
[tex]\[ 7 \times \left(-\frac{1}{7}\right) = -1 \][/tex]
Since this condition is satisfied, the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular.
### Step 2: Verify Bisecting Each Other
2. Midpoint of Diagonals:
We are given that the midpoint of both diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
To confirm that the diagonals bisect each other, they must have the same midpoint.
Given:
- Midpoint of [tex]\(\overline{RP}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
- Midpoint of [tex]\(\overline{SQ}\)[/tex] is also [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
Since both diagonals share the same midpoint, this confirms that they bisect each other.
### Conclusion
Since the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular (their slopes are negative reciprocals) and they bisect each other (same midpoint), we can conclude that:
- The diagonals of square [tex]\( PQRS \)[/tex] are both perpendicular and bisectors of each other.
Therefore, the statement that proves the diagonals of square [tex]\( PQRS \)[/tex] are perpendicular bisectors of each other is verified by:
[tex]\[ \textrm{The slopes of the diagonals are negative reciprocals, and both diagonals have the same midpoint.} \][/tex]
Thus, the correct conclusion is that the diagonals of square [tex]\( PQRS \)[/tex] are indeed perpendicular bisectors of each other.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.