Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine if the diagonals of square [tex]\( PQRS \)[/tex] are perpendicular bisectors of each other, let’s analyze the given information step by step.
### Step 1: Verify Perpendicularity
1. Slope of Diagonals:
We are given:
- The slope of [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
To confirm that these diagonals are perpendicular, their slopes should be negative reciprocals of each other. Specifically, the product of the slopes of perpendicular lines is [tex]\(-1\)[/tex].
[tex]\[ 7 \times \left(-\frac{1}{7}\right) = -1 \][/tex]
Since this condition is satisfied, the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular.
### Step 2: Verify Bisecting Each Other
2. Midpoint of Diagonals:
We are given that the midpoint of both diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
To confirm that the diagonals bisect each other, they must have the same midpoint.
Given:
- Midpoint of [tex]\(\overline{RP}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
- Midpoint of [tex]\(\overline{SQ}\)[/tex] is also [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
Since both diagonals share the same midpoint, this confirms that they bisect each other.
### Conclusion
Since the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular (their slopes are negative reciprocals) and they bisect each other (same midpoint), we can conclude that:
- The diagonals of square [tex]\( PQRS \)[/tex] are both perpendicular and bisectors of each other.
Therefore, the statement that proves the diagonals of square [tex]\( PQRS \)[/tex] are perpendicular bisectors of each other is verified by:
[tex]\[ \textrm{The slopes of the diagonals are negative reciprocals, and both diagonals have the same midpoint.} \][/tex]
Thus, the correct conclusion is that the diagonals of square [tex]\( PQRS \)[/tex] are indeed perpendicular bisectors of each other.
### Step 1: Verify Perpendicularity
1. Slope of Diagonals:
We are given:
- The slope of [tex]\(\overline{RP}\)[/tex] is [tex]\(7\)[/tex].
- The slope of [tex]\(\overline{SQ}\)[/tex] is [tex]\(-\frac{1}{7}\)[/tex].
To confirm that these diagonals are perpendicular, their slopes should be negative reciprocals of each other. Specifically, the product of the slopes of perpendicular lines is [tex]\(-1\)[/tex].
[tex]\[ 7 \times \left(-\frac{1}{7}\right) = -1 \][/tex]
Since this condition is satisfied, the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular.
### Step 2: Verify Bisecting Each Other
2. Midpoint of Diagonals:
We are given that the midpoint of both diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
To confirm that the diagonals bisect each other, they must have the same midpoint.
Given:
- Midpoint of [tex]\(\overline{RP}\)[/tex] is [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
- Midpoint of [tex]\(\overline{SQ}\)[/tex] is also [tex]\(\left(4 \frac{1}{2}, 5 \frac{1}{2}\right)\)[/tex].
Since both diagonals share the same midpoint, this confirms that they bisect each other.
### Conclusion
Since the diagonals [tex]\(\overline{RP}\)[/tex] and [tex]\(\overline{SQ}\)[/tex] are perpendicular (their slopes are negative reciprocals) and they bisect each other (same midpoint), we can conclude that:
- The diagonals of square [tex]\( PQRS \)[/tex] are both perpendicular and bisectors of each other.
Therefore, the statement that proves the diagonals of square [tex]\( PQRS \)[/tex] are perpendicular bisectors of each other is verified by:
[tex]\[ \textrm{The slopes of the diagonals are negative reciprocals, and both diagonals have the same midpoint.} \][/tex]
Thus, the correct conclusion is that the diagonals of square [tex]\( PQRS \)[/tex] are indeed perpendicular bisectors of each other.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.