Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's analyze the given expression [tex]\((x-p)(x-q)\)[/tex].
To solve for [tex]\(x\)[/tex], we need to understand the concept being illustrated here. This expression is a product of two binomials. For a product of two quantities to be zero, at least one of the quantities must be zero. Mathematically, this concept is captured by the Zero Product Property.
Step-by-Step Solution:
1. Consider the product [tex]\((x-p)(x-q) = 0\)[/tex].
2. According to the Zero Product Property, if the product of two terms is zero, then at least one of the terms must be zero.
3. This gives us two possible equations:
- [tex]\(x - p = 0\)[/tex]
- [tex]\(x - q = 0\)[/tex]
4. Solving these equations individually:
- From [tex]\(x - p = 0\)[/tex], we get [tex]\(x = p\)[/tex].
- From [tex]\(x - q = 0\)[/tex], we get [tex]\(x = q\)[/tex].
So, the solutions to the equation [tex]\((x-p)(x-q) = 0\)[/tex] are [tex]\(x = p\)[/tex] or [tex]\(x = q\)[/tex].
Therefore, [tex]\((x-p)(x-q) \rightarrow x=p \text{ or } x=q\)[/tex] illustrates the Zero Product Property.
Type your answer in the box.
To solve for [tex]\(x\)[/tex], we need to understand the concept being illustrated here. This expression is a product of two binomials. For a product of two quantities to be zero, at least one of the quantities must be zero. Mathematically, this concept is captured by the Zero Product Property.
Step-by-Step Solution:
1. Consider the product [tex]\((x-p)(x-q) = 0\)[/tex].
2. According to the Zero Product Property, if the product of two terms is zero, then at least one of the terms must be zero.
3. This gives us two possible equations:
- [tex]\(x - p = 0\)[/tex]
- [tex]\(x - q = 0\)[/tex]
4. Solving these equations individually:
- From [tex]\(x - p = 0\)[/tex], we get [tex]\(x = p\)[/tex].
- From [tex]\(x - q = 0\)[/tex], we get [tex]\(x = q\)[/tex].
So, the solutions to the equation [tex]\((x-p)(x-q) = 0\)[/tex] are [tex]\(x = p\)[/tex] or [tex]\(x = q\)[/tex].
Therefore, [tex]\((x-p)(x-q) \rightarrow x=p \text{ or } x=q\)[/tex] illustrates the Zero Product Property.
Type your answer in the box.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.