Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's tackle the problem of factoring the quadratic expression [tex]\(2x^2 + 7x + 6\)[/tex]. To factorize this, we need to express it as a product of two binomials.
### Step-by-Step Solution:
1. Identify the quadratic expression:
We start with the quadratic expression [tex]\(2x^2 + 7x + 6\)[/tex].
2. Factor the expression:
We want to factor the quadratic expression [tex]\(2x^2 + 7x + 6\)[/tex] into the form [tex]\((ax + b)(cx + d)\)[/tex].
Through factoring, we find that:
[tex]\[ 2x^2 + 7x + 6 = (x + 2)(2x + 3) \][/tex]
3. Equation of Area Representation:
To represent this algebraically, we express that the area of the rectangle formed by sides [tex]\((x + 2)\)[/tex] and [tex]\((2x + 3)\)[/tex] is equivalent to the original quadratic expression.
Therefore:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
[tex]\[ 2x^2 + 7x + 6 = (x + 2)(2x + 3) \][/tex]
4. Verify by Multiplying the Factors to get the Original Expression:
Let's expand the factors to ensure we get back the original expression:
[tex]\[ (x + 2)(2x + 3) = x \cdot 2x + x \cdot 3 + 2 \cdot 2x + 2 \cdot 3 \][/tex]
[tex]\[ = 2x^2 + 3x + 4x + 6 \][/tex]
[tex]\[ = 2x^2 + 7x + 6 \][/tex]
Thus, the factors multiply to give us the original quadratic expression, confirming that our factorization is correct.
### Rectangular Sketch:
To visualize it, you can imagine the rectangle with sides [tex]\(x + 2\)[/tex] and [tex]\(2x + 3\)[/tex]:
- The length of the rectangle is [tex]\(x + 2\)[/tex].
- The width of the rectangle is [tex]\(2x + 3\)[/tex].
### Conclusion:
We have successfully factored the quadratic expression [tex]\(2x^2 + 7x + 6\)[/tex] into [tex]\((x + 2)(2x + 3)\)[/tex]. This means it can be represented as a rectangular area where one side is [tex]\(x + 2\)[/tex] and the other side is [tex]\(2x + 3\)[/tex]. The area of this rectangle matches the original quadratic expression when multiplied out, confirming the factorization.
Thus, [tex]\(2x^2 + 7x + 6\)[/tex] can indeed be factored, and the area equivalently represents the product of its side length factors.
### Step-by-Step Solution:
1. Identify the quadratic expression:
We start with the quadratic expression [tex]\(2x^2 + 7x + 6\)[/tex].
2. Factor the expression:
We want to factor the quadratic expression [tex]\(2x^2 + 7x + 6\)[/tex] into the form [tex]\((ax + b)(cx + d)\)[/tex].
Through factoring, we find that:
[tex]\[ 2x^2 + 7x + 6 = (x + 2)(2x + 3) \][/tex]
3. Equation of Area Representation:
To represent this algebraically, we express that the area of the rectangle formed by sides [tex]\((x + 2)\)[/tex] and [tex]\((2x + 3)\)[/tex] is equivalent to the original quadratic expression.
Therefore:
[tex]\[ \text{Area} = \text{Length} \times \text{Width} \][/tex]
[tex]\[ 2x^2 + 7x + 6 = (x + 2)(2x + 3) \][/tex]
4. Verify by Multiplying the Factors to get the Original Expression:
Let's expand the factors to ensure we get back the original expression:
[tex]\[ (x + 2)(2x + 3) = x \cdot 2x + x \cdot 3 + 2 \cdot 2x + 2 \cdot 3 \][/tex]
[tex]\[ = 2x^2 + 3x + 4x + 6 \][/tex]
[tex]\[ = 2x^2 + 7x + 6 \][/tex]
Thus, the factors multiply to give us the original quadratic expression, confirming that our factorization is correct.
### Rectangular Sketch:
To visualize it, you can imagine the rectangle with sides [tex]\(x + 2\)[/tex] and [tex]\(2x + 3\)[/tex]:
- The length of the rectangle is [tex]\(x + 2\)[/tex].
- The width of the rectangle is [tex]\(2x + 3\)[/tex].
### Conclusion:
We have successfully factored the quadratic expression [tex]\(2x^2 + 7x + 6\)[/tex] into [tex]\((x + 2)(2x + 3)\)[/tex]. This means it can be represented as a rectangular area where one side is [tex]\(x + 2\)[/tex] and the other side is [tex]\(2x + 3\)[/tex]. The area of this rectangle matches the original quadratic expression when multiplied out, confirming the factorization.
Thus, [tex]\(2x^2 + 7x + 6\)[/tex] can indeed be factored, and the area equivalently represents the product of its side length factors.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.