Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To write the given statements ("Sara spent [tex]$2 more than Lauren," and "together they spent $[/tex]19") as an equation, follow these steps:
1. Let's denote the amount of money that Lauren spent as [tex]\( l \)[/tex].
2. Since Sara spent [tex]$2 more than Lauren, we can denote the amount of money Sara spent as \( s \). Therefore, \( s = l + 2 \). The first statement translates into the equation: \[ s = l + 2 \] 3. Next, we know that together they spent $[/tex]19. This can be written as:
[tex]\[ s + l = 19 \][/tex]
4. Combining these two pieces of information, we have the system of equations:
[tex]\[ s = l + 2 \][/tex]
[tex]\[ s + l = 19 \][/tex]
We now look at the options provided and choose the correct equation that matches our system.
- A. [tex]\( 19 - k + (k + 1) \)[/tex]
This option does not fit our system.
- B. [tex]\( s + 2 = 19 \)[/tex]
This option is incorrect because it does not represent that Sara spent [tex]$2 more than Lauren. - C. \( m = m + 2 \) This is incorrect as it is a trivial equation and does not relate to the problem at hand. - D. \( l + (l + 2) = 19 \) This option correctly represents the scenario. The left-hand side (\( l + (l + 2) \)) translates to the total amount spent by Lauren and Sara, and the right-hand side (19) is the total amount spent. Option D accurately represents both given statements, which are: 1. Sara spent $[/tex]2 more than Lauren, [tex]\( s = l + 2 \)[/tex].
2. Together they spent $19, [tex]\( l + (l + 2) = 19 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{l + (l + 2) = 19} \][/tex]
1. Let's denote the amount of money that Lauren spent as [tex]\( l \)[/tex].
2. Since Sara spent [tex]$2 more than Lauren, we can denote the amount of money Sara spent as \( s \). Therefore, \( s = l + 2 \). The first statement translates into the equation: \[ s = l + 2 \] 3. Next, we know that together they spent $[/tex]19. This can be written as:
[tex]\[ s + l = 19 \][/tex]
4. Combining these two pieces of information, we have the system of equations:
[tex]\[ s = l + 2 \][/tex]
[tex]\[ s + l = 19 \][/tex]
We now look at the options provided and choose the correct equation that matches our system.
- A. [tex]\( 19 - k + (k + 1) \)[/tex]
This option does not fit our system.
- B. [tex]\( s + 2 = 19 \)[/tex]
This option is incorrect because it does not represent that Sara spent [tex]$2 more than Lauren. - C. \( m = m + 2 \) This is incorrect as it is a trivial equation and does not relate to the problem at hand. - D. \( l + (l + 2) = 19 \) This option correctly represents the scenario. The left-hand side (\( l + (l + 2) \)) translates to the total amount spent by Lauren and Sara, and the right-hand side (19) is the total amount spent. Option D accurately represents both given statements, which are: 1. Sara spent $[/tex]2 more than Lauren, [tex]\( s = l + 2 \)[/tex].
2. Together they spent $19, [tex]\( l + (l + 2) = 19 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{l + (l + 2) = 19} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.
I need help with piecewise functions. How to find the domain and range and how to write it notation.