Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Solve for [tex]\( u \)[/tex].

[tex]\[ u^2 - 2u - 24 = 0 \][/tex]

If there is more than one solution, separate them with commas. If there is no solution, click on "No solution."

[tex]\[ u = \][/tex] [tex]\(\square\)[/tex]

Sagot :

To solve the quadratic equation [tex]\(u^2 - 2u - 24 = 0\)[/tex], we will use the quadratic formula. The quadratic formula for an equation of the form [tex]\(au^2 + bu + c = 0\)[/tex] is given by:

[tex]\[ u = \frac{{-b \pm \sqrt{b^2 - 4ac}}}{2a} \][/tex]

Here, the coefficients are:
[tex]\[ a = 1, \quad b = -2, \quad c = -24 \][/tex]

1. Calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \text{Discriminant} = (-2)^2 - 4(1)(-24) \][/tex]
[tex]\[ \text{Discriminant} = 4 + 96 \][/tex]
[tex]\[ \text{Discriminant} = 100 \][/tex]

2. Since the discriminant is positive (100), there are two distinct real solutions.

3. Find the two solutions using the quadratic formula:
[tex]\[ u = \frac{{-b \pm \sqrt{\text{Discriminant}}}}{2a} \][/tex]
Substituting the values:
[tex]\[ u = \frac{{-(-2) \pm \sqrt{100}}}{2(1)} \][/tex]
[tex]\[ u = \frac{{2 \pm 10}}{2} \][/tex]

- For the positive root:
[tex]\[ u_1 = \frac{{2 + 10}}{2} \][/tex]
[tex]\[ u_1 = \frac{{12}}{2} \][/tex]
[tex]\[ u_1 = 6 \][/tex]

- For the negative root:
[tex]\[ u_2 = \frac{{2 - 10}}{2} \][/tex]
[tex]\[ u_2 = \frac{{-8}}{2} \][/tex]
[tex]\[ u_2 = -4 \][/tex]

The solutions to the quadratic equation [tex]\(u^2 - 2u - 24 = 0\)[/tex] are:
[tex]\[ u = 6, -4 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.