Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which equation represents a line that is parallel to [tex]\( y = \frac{1}{2} x - 2 \)[/tex] and passes through the point [tex]\((-8, 1)\)[/tex], we need to follow these steps:
### Step 1: Identify the Slope of the Given Line
The equation [tex]\( y = \frac{1}{2} x - 2 \)[/tex] is in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. From this equation, we can see that the slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
### Step 2: Understand the Condition for Parallel Lines
Lines that are parallel have the same slope. Therefore, the slope of our new line must also be [tex]\( \frac{1}{2} \)[/tex].
### Step 3: Apply the Point-Slope Form
The line passes through the point [tex]\((-8, 1)\)[/tex], so we can use the point-slope form of the equation of a line:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is [tex]\((-8, 1)\)[/tex] and [tex]\( m \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
Substitute the values into the point-slope form:
[tex]\[ y - 1 = \frac{1}{2}(x - (-8)) \][/tex]
[tex]\[ y - 1 = \frac{1}{2}(x + 8) \][/tex]
### Step 4: Simplify to Slope-Intercept Form
Solve for [tex]\( y \)[/tex] to convert this equation to slope-intercept form ([tex]\( y = mx + b \)[/tex]):
[tex]\[ y - 1 = \frac{1}{2}x + \frac{1}{2} \times 8 \][/tex]
[tex]\[ y - 1 = \frac{1}{2}x + 4 \][/tex]
[tex]\[ y = \frac{1}{2}x + 4 + 1 \][/tex]
[tex]\[ y = \frac{1}{2}x + 5 \][/tex]
### Step 5: Identify the Correct Option
The equation we derived is [tex]\( y = \frac{1}{2} x + 5 \)[/tex]. Now, we check the given options:
[tex]\[ \begin{array}{c} 1. \ y = \frac{1}{2} x + 5 \\ 2. \ y = \frac{1}{2} x - 9 \\ 3. \ y = -2 x - 7 \\ 4. \ y = -\frac{1}{2} x + 5 \\ 5. \ y = -2 x - 5 \\ \end{array} \][/tex]
The correct equation is:
[tex]\[ y = \frac{1}{2} x + 5 \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{1} \][/tex]
### Step 1: Identify the Slope of the Given Line
The equation [tex]\( y = \frac{1}{2} x - 2 \)[/tex] is in slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. From this equation, we can see that the slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
### Step 2: Understand the Condition for Parallel Lines
Lines that are parallel have the same slope. Therefore, the slope of our new line must also be [tex]\( \frac{1}{2} \)[/tex].
### Step 3: Apply the Point-Slope Form
The line passes through the point [tex]\((-8, 1)\)[/tex], so we can use the point-slope form of the equation of a line:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( (x_1, y_1) \)[/tex] is [tex]\((-8, 1)\)[/tex] and [tex]\( m \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
Substitute the values into the point-slope form:
[tex]\[ y - 1 = \frac{1}{2}(x - (-8)) \][/tex]
[tex]\[ y - 1 = \frac{1}{2}(x + 8) \][/tex]
### Step 4: Simplify to Slope-Intercept Form
Solve for [tex]\( y \)[/tex] to convert this equation to slope-intercept form ([tex]\( y = mx + b \)[/tex]):
[tex]\[ y - 1 = \frac{1}{2}x + \frac{1}{2} \times 8 \][/tex]
[tex]\[ y - 1 = \frac{1}{2}x + 4 \][/tex]
[tex]\[ y = \frac{1}{2}x + 4 + 1 \][/tex]
[tex]\[ y = \frac{1}{2}x + 5 \][/tex]
### Step 5: Identify the Correct Option
The equation we derived is [tex]\( y = \frac{1}{2} x + 5 \)[/tex]. Now, we check the given options:
[tex]\[ \begin{array}{c} 1. \ y = \frac{1}{2} x + 5 \\ 2. \ y = \frac{1}{2} x - 9 \\ 3. \ y = -2 x - 7 \\ 4. \ y = -\frac{1}{2} x + 5 \\ 5. \ y = -2 x - 5 \\ \end{array} \][/tex]
The correct equation is:
[tex]\[ y = \frac{1}{2} x + 5 \][/tex]
Therefore, the answer is:
[tex]\[ \boxed{1} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.