Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the length of the altitude to the hypotenuse of a right triangle, let's use the geometric mean theorem, also known as the altitude theorem. This theorem states that the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the two segments into which it divides the hypotenuse.
Let's denote the lengths of the two segments as [tex]\( seg1 \)[/tex] and [tex]\( seg2 \)[/tex]. According to the problem, these are 6 and 9 respectively.
The geometric mean of two numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex] is given by:
[tex]\[ \text{Geometric Mean} = \sqrt{a \cdot b} \][/tex]
Here, [tex]\( a = 6 \)[/tex] and [tex]\( b = 9 \)[/tex].
So, we calculate:
[tex]\[ \text{Altitude} = \sqrt{6 \cdot 9} = \sqrt{54} \][/tex]
We can simplify [tex]\( \sqrt{54} \)[/tex] as follows:
[tex]\[ \sqrt{54} = \sqrt{9 \cdot 6} = \sqrt{9} \cdot \sqrt{6} = 3\sqrt{6} \][/tex]
Therefore, the length of the altitude is:
[tex]\[ \text{Altitude} = 3\sqrt{6} \][/tex]
Given the options:
A. [tex]\( 9 \sqrt{2} \)[/tex]
B. [tex]\( 6 \sqrt{6} \)[/tex]
C. [tex]\( 3 \sqrt{6} \)[/tex]
D. [tex]\( 6 \sqrt{3} \)[/tex]
The correct answer is:
C. [tex]\( 3\sqrt{6} \)[/tex]
Let's denote the lengths of the two segments as [tex]\( seg1 \)[/tex] and [tex]\( seg2 \)[/tex]. According to the problem, these are 6 and 9 respectively.
The geometric mean of two numbers [tex]\( a \)[/tex] and [tex]\( b \)[/tex] is given by:
[tex]\[ \text{Geometric Mean} = \sqrt{a \cdot b} \][/tex]
Here, [tex]\( a = 6 \)[/tex] and [tex]\( b = 9 \)[/tex].
So, we calculate:
[tex]\[ \text{Altitude} = \sqrt{6 \cdot 9} = \sqrt{54} \][/tex]
We can simplify [tex]\( \sqrt{54} \)[/tex] as follows:
[tex]\[ \sqrt{54} = \sqrt{9 \cdot 6} = \sqrt{9} \cdot \sqrt{6} = 3\sqrt{6} \][/tex]
Therefore, the length of the altitude is:
[tex]\[ \text{Altitude} = 3\sqrt{6} \][/tex]
Given the options:
A. [tex]\( 9 \sqrt{2} \)[/tex]
B. [tex]\( 6 \sqrt{6} \)[/tex]
C. [tex]\( 3 \sqrt{6} \)[/tex]
D. [tex]\( 6 \sqrt{3} \)[/tex]
The correct answer is:
C. [tex]\( 3\sqrt{6} \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.