Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
In a quadratic equation of the form [tex]\( a(x - h)^2 + k \)[/tex], the expression is written in vertex form. Here, [tex]\( (h, k) \)[/tex] represents the vertex of the parabola.
To understand why [tex]\( (h, k) \)[/tex] represents the vertex, let's consider the general steps and reasoning:
1. Starting with Vertex Form:
The vertex form of a quadratic function is [tex]\( f(x) = a(x - h)^2 + k \)[/tex].
2. Understanding the Terms:
- [tex]\( a \)[/tex] is a coefficient that determines the direction and the width of the parabola. If [tex]\( a > 0 \)[/tex], the parabola opens upwards. If [tex]\( a < 0 \)[/tex], it opens downwards.
- [tex]\( (x - h) \)[/tex] indicates that the parabola is shifted [tex]\( h \)[/tex] units horizontally. If [tex]\( h \)[/tex] is positive, the shift is to the right. If [tex]\( h \)[/tex] is negative, the shift is to the left.
- [tex]\( k \)[/tex] represents a vertical shift. If [tex]\( k \)[/tex] is positive, the parabola moves [tex]\( k \)[/tex] units up. If [tex]\( k \)[/tex] is negative, it moves [tex]\( k \)[/tex] units down.
3. Finding the Vertex:
- The term [tex]\( (x - h)^2 \)[/tex] reaches its minimum value when [tex]\( (x - h) = 0 \)[/tex]—that is, when [tex]\( x = h \)[/tex].
- At [tex]\( x = h \)[/tex], the value of the quadratic function [tex]\( f(x) \)[/tex] is [tex]\( f(h) = a(h - h)^2 + k = a \cdot 0 + k = k \)[/tex].
4. Conclusion:
- Therefore, the coordinate [tex]\( (h, k) \)[/tex] is the point where the quadratic function reaches its minimum (if [tex]\( a > 0 \)[/tex]) or maximum (if [tex]\( a < 0 \)[/tex]) value.
Thus, in the quadratic equation [tex]\( a(x - h)^2 + k \)[/tex], the point [tex]\( (h, k) \)[/tex] represents the vertex of the parabola. This is the highest or lowest point on the graph, depending on the sign of [tex]\( a \)[/tex].
To understand why [tex]\( (h, k) \)[/tex] represents the vertex, let's consider the general steps and reasoning:
1. Starting with Vertex Form:
The vertex form of a quadratic function is [tex]\( f(x) = a(x - h)^2 + k \)[/tex].
2. Understanding the Terms:
- [tex]\( a \)[/tex] is a coefficient that determines the direction and the width of the parabola. If [tex]\( a > 0 \)[/tex], the parabola opens upwards. If [tex]\( a < 0 \)[/tex], it opens downwards.
- [tex]\( (x - h) \)[/tex] indicates that the parabola is shifted [tex]\( h \)[/tex] units horizontally. If [tex]\( h \)[/tex] is positive, the shift is to the right. If [tex]\( h \)[/tex] is negative, the shift is to the left.
- [tex]\( k \)[/tex] represents a vertical shift. If [tex]\( k \)[/tex] is positive, the parabola moves [tex]\( k \)[/tex] units up. If [tex]\( k \)[/tex] is negative, it moves [tex]\( k \)[/tex] units down.
3. Finding the Vertex:
- The term [tex]\( (x - h)^2 \)[/tex] reaches its minimum value when [tex]\( (x - h) = 0 \)[/tex]—that is, when [tex]\( x = h \)[/tex].
- At [tex]\( x = h \)[/tex], the value of the quadratic function [tex]\( f(x) \)[/tex] is [tex]\( f(h) = a(h - h)^2 + k = a \cdot 0 + k = k \)[/tex].
4. Conclusion:
- Therefore, the coordinate [tex]\( (h, k) \)[/tex] is the point where the quadratic function reaches its minimum (if [tex]\( a > 0 \)[/tex]) or maximum (if [tex]\( a < 0 \)[/tex]) value.
Thus, in the quadratic equation [tex]\( a(x - h)^2 + k \)[/tex], the point [tex]\( (h, k) \)[/tex] represents the vertex of the parabola. This is the highest or lowest point on the graph, depending on the sign of [tex]\( a \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.