Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the radius of a circle given the arc length and the central angle, we can use the relationship between these quantities in a circle. The formula connecting the arc length ([tex]\(s\)[/tex]), the radius ([tex]\(r\)[/tex]), and the central angle ([tex]\(\theta\)[/tex]) in radians is given by:
[tex]\[ s = r \theta \][/tex]
We are provided with the following information:
- Arc length ([tex]\(s\)[/tex]): [tex]\(18 \, \text{cm}\)[/tex]
- Central angle ([tex]\(\theta\)[/tex]): [tex]\(\frac{7 \pi}{6} \)[/tex] radians
We'll use 3.14 for [tex]\(\pi\)[/tex], hence:
[tex]\[ \theta = \frac{7 \times 3.14}{6} \][/tex]
Plug this value into the formula:
[tex]\[ 18 = r \times \frac{7 \times 3.14}{6} \][/tex]
To solve for [tex]\(r\)[/tex], isolate [tex]\(r\)[/tex] by dividing both sides of the equation by [tex]\(\frac{7 \times 3.14}{6}\)[/tex]:
[tex]\[ r = \frac{18 \times 6}{7 \times 3.14} \][/tex]
Evaluate the expression:
[tex]\[ r = \frac{108}{21.98} \][/tex]
Calculate the division:
[tex]\[ r \approx 4.9 \, \text{cm} \][/tex]
Therefore, the radius of the circle is approximately [tex]\(4.9 \, \text{cm}\)[/tex]. The answer is:
[tex]\[ \boxed{4.9 \, \text{cm}} \][/tex]
[tex]\[ s = r \theta \][/tex]
We are provided with the following information:
- Arc length ([tex]\(s\)[/tex]): [tex]\(18 \, \text{cm}\)[/tex]
- Central angle ([tex]\(\theta\)[/tex]): [tex]\(\frac{7 \pi}{6} \)[/tex] radians
We'll use 3.14 for [tex]\(\pi\)[/tex], hence:
[tex]\[ \theta = \frac{7 \times 3.14}{6} \][/tex]
Plug this value into the formula:
[tex]\[ 18 = r \times \frac{7 \times 3.14}{6} \][/tex]
To solve for [tex]\(r\)[/tex], isolate [tex]\(r\)[/tex] by dividing both sides of the equation by [tex]\(\frac{7 \times 3.14}{6}\)[/tex]:
[tex]\[ r = \frac{18 \times 6}{7 \times 3.14} \][/tex]
Evaluate the expression:
[tex]\[ r = \frac{108}{21.98} \][/tex]
Calculate the division:
[tex]\[ r \approx 4.9 \, \text{cm} \][/tex]
Therefore, the radius of the circle is approximately [tex]\(4.9 \, \text{cm}\)[/tex]. The answer is:
[tex]\[ \boxed{4.9 \, \text{cm}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.