Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the given inequality step-by-step:
The inequality provided is:
[tex]\[ -10 < 3x - 4 < 8 \][/tex]
Step 1: Isolate the term involving the variable [tex]\( x \)[/tex] in the inequality.
First, add 4 to all parts of the inequality:
[tex]\[ -10 + 4 < 3x - 4 + 4 < 8 + 4 \][/tex]
[tex]\[ -6 < 3x < 12 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex] by dividing all parts of the inequality by 3.
Divide each term by 3:
[tex]\[ \frac{-6}{3} < \frac{3x}{3} < \frac{12}{3} \][/tex]
[tex]\[ -2 < x < 4 \][/tex]
So, the solution to the inequality [tex]\( -10 < 3x - 4 < 8 \)[/tex] is:
[tex]\[ -2 < x < 4 \][/tex]
Step 3: Represent the solution set graphically.
This means [tex]\( x \)[/tex] can take any value between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex], but not including [tex]\(-2\)[/tex] and [tex]\(4\)[/tex].
On a number line, this is represented by:
- An open circle at [tex]\(-2\)[/tex] indicating that [tex]\(-2\)[/tex] is not included.
- An open circle at [tex]\(4\)[/tex] indicating that [tex]\(4\)[/tex] is not included.
- A shaded line between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex] indicating all the values of [tex]\( x \)[/tex] between these points are included in the solution set.
Therefore, the graph of the solution set of [tex]\(-10 < 3x - 4 < 8\)[/tex] is a line segment on the number line extending from [tex]\(-2\)[/tex] to [tex]\(4\)[/tex] with open circles at each endpoint.
The inequality provided is:
[tex]\[ -10 < 3x - 4 < 8 \][/tex]
Step 1: Isolate the term involving the variable [tex]\( x \)[/tex] in the inequality.
First, add 4 to all parts of the inequality:
[tex]\[ -10 + 4 < 3x - 4 + 4 < 8 + 4 \][/tex]
[tex]\[ -6 < 3x < 12 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex] by dividing all parts of the inequality by 3.
Divide each term by 3:
[tex]\[ \frac{-6}{3} < \frac{3x}{3} < \frac{12}{3} \][/tex]
[tex]\[ -2 < x < 4 \][/tex]
So, the solution to the inequality [tex]\( -10 < 3x - 4 < 8 \)[/tex] is:
[tex]\[ -2 < x < 4 \][/tex]
Step 3: Represent the solution set graphically.
This means [tex]\( x \)[/tex] can take any value between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex], but not including [tex]\(-2\)[/tex] and [tex]\(4\)[/tex].
On a number line, this is represented by:
- An open circle at [tex]\(-2\)[/tex] indicating that [tex]\(-2\)[/tex] is not included.
- An open circle at [tex]\(4\)[/tex] indicating that [tex]\(4\)[/tex] is not included.
- A shaded line between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex] indicating all the values of [tex]\( x \)[/tex] between these points are included in the solution set.
Therefore, the graph of the solution set of [tex]\(-10 < 3x - 4 < 8\)[/tex] is a line segment on the number line extending from [tex]\(-2\)[/tex] to [tex]\(4\)[/tex] with open circles at each endpoint.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.