Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the given inequality step-by-step:
The inequality provided is:
[tex]\[ -10 < 3x - 4 < 8 \][/tex]
Step 1: Isolate the term involving the variable [tex]\( x \)[/tex] in the inequality.
First, add 4 to all parts of the inequality:
[tex]\[ -10 + 4 < 3x - 4 + 4 < 8 + 4 \][/tex]
[tex]\[ -6 < 3x < 12 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex] by dividing all parts of the inequality by 3.
Divide each term by 3:
[tex]\[ \frac{-6}{3} < \frac{3x}{3} < \frac{12}{3} \][/tex]
[tex]\[ -2 < x < 4 \][/tex]
So, the solution to the inequality [tex]\( -10 < 3x - 4 < 8 \)[/tex] is:
[tex]\[ -2 < x < 4 \][/tex]
Step 3: Represent the solution set graphically.
This means [tex]\( x \)[/tex] can take any value between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex], but not including [tex]\(-2\)[/tex] and [tex]\(4\)[/tex].
On a number line, this is represented by:
- An open circle at [tex]\(-2\)[/tex] indicating that [tex]\(-2\)[/tex] is not included.
- An open circle at [tex]\(4\)[/tex] indicating that [tex]\(4\)[/tex] is not included.
- A shaded line between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex] indicating all the values of [tex]\( x \)[/tex] between these points are included in the solution set.
Therefore, the graph of the solution set of [tex]\(-10 < 3x - 4 < 8\)[/tex] is a line segment on the number line extending from [tex]\(-2\)[/tex] to [tex]\(4\)[/tex] with open circles at each endpoint.
The inequality provided is:
[tex]\[ -10 < 3x - 4 < 8 \][/tex]
Step 1: Isolate the term involving the variable [tex]\( x \)[/tex] in the inequality.
First, add 4 to all parts of the inequality:
[tex]\[ -10 + 4 < 3x - 4 + 4 < 8 + 4 \][/tex]
[tex]\[ -6 < 3x < 12 \][/tex]
Step 2: Solve for [tex]\( x \)[/tex] by dividing all parts of the inequality by 3.
Divide each term by 3:
[tex]\[ \frac{-6}{3} < \frac{3x}{3} < \frac{12}{3} \][/tex]
[tex]\[ -2 < x < 4 \][/tex]
So, the solution to the inequality [tex]\( -10 < 3x - 4 < 8 \)[/tex] is:
[tex]\[ -2 < x < 4 \][/tex]
Step 3: Represent the solution set graphically.
This means [tex]\( x \)[/tex] can take any value between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex], but not including [tex]\(-2\)[/tex] and [tex]\(4\)[/tex].
On a number line, this is represented by:
- An open circle at [tex]\(-2\)[/tex] indicating that [tex]\(-2\)[/tex] is not included.
- An open circle at [tex]\(4\)[/tex] indicating that [tex]\(4\)[/tex] is not included.
- A shaded line between [tex]\(-2\)[/tex] and [tex]\(4\)[/tex] indicating all the values of [tex]\( x \)[/tex] between these points are included in the solution set.
Therefore, the graph of the solution set of [tex]\(-10 < 3x - 4 < 8\)[/tex] is a line segment on the number line extending from [tex]\(-2\)[/tex] to [tex]\(4\)[/tex] with open circles at each endpoint.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.