Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the range of the function [tex]\( g(x) \)[/tex] based on the given table of values, let's systematically proceed through the solution.
Firstly, let's identify the values of [tex]\( g(x) \)[/tex] from the table:
- [tex]\( g\left(\frac{1}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(1) = 4 \)[/tex]
- [tex]\( g\left(\frac{3}{2}\right) = \frac{19}{4} \)[/tex]
- [tex]\( g(2) = 4 \)[/tex]
- [tex]\( g\left(\frac{5}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(3) = -2 \)[/tex]
We now collect all these values to form a list:
[tex]\[ g(x) = \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} \][/tex]
Next, let's determine the maximum value among these:
[tex]\[ \max \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} = \frac{19}{4} \][/tex]
As the quadratic function opens downwards (we can infer because there is a maximum point and the behavior of values around it), the range of [tex]\( g(x) \)[/tex] will include all values from the maximum value downwards.
Therefore, the range of [tex]\( g(x) \)[/tex] is:
[tex]\[ \text{All real numbers less than or equal to} \ \frac{19}{4} \][/tex]
Given the options:
A. All real numbers less than or equal to [tex]\(\frac{3}{2}\)[/tex].
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
C. All real numbers greater than or equal to [tex]\(\frac{3}{2}\)[/tex].
D. All real numbers greater than or equal to [tex]\(\frac{19}{4}\)[/tex].
The correct answer is:
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
Firstly, let's identify the values of [tex]\( g(x) \)[/tex] from the table:
- [tex]\( g\left(\frac{1}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(1) = 4 \)[/tex]
- [tex]\( g\left(\frac{3}{2}\right) = \frac{19}{4} \)[/tex]
- [tex]\( g(2) = 4 \)[/tex]
- [tex]\( g\left(\frac{5}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(3) = -2 \)[/tex]
We now collect all these values to form a list:
[tex]\[ g(x) = \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} \][/tex]
Next, let's determine the maximum value among these:
[tex]\[ \max \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} = \frac{19}{4} \][/tex]
As the quadratic function opens downwards (we can infer because there is a maximum point and the behavior of values around it), the range of [tex]\( g(x) \)[/tex] will include all values from the maximum value downwards.
Therefore, the range of [tex]\( g(x) \)[/tex] is:
[tex]\[ \text{All real numbers less than or equal to} \ \frac{19}{4} \][/tex]
Given the options:
A. All real numbers less than or equal to [tex]\(\frac{3}{2}\)[/tex].
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
C. All real numbers greater than or equal to [tex]\(\frac{3}{2}\)[/tex].
D. All real numbers greater than or equal to [tex]\(\frac{19}{4}\)[/tex].
The correct answer is:
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.