Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the range of the function [tex]\( g(x) \)[/tex] based on the given table of values, let's systematically proceed through the solution.
Firstly, let's identify the values of [tex]\( g(x) \)[/tex] from the table:
- [tex]\( g\left(\frac{1}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(1) = 4 \)[/tex]
- [tex]\( g\left(\frac{3}{2}\right) = \frac{19}{4} \)[/tex]
- [tex]\( g(2) = 4 \)[/tex]
- [tex]\( g\left(\frac{5}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(3) = -2 \)[/tex]
We now collect all these values to form a list:
[tex]\[ g(x) = \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} \][/tex]
Next, let's determine the maximum value among these:
[tex]\[ \max \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} = \frac{19}{4} \][/tex]
As the quadratic function opens downwards (we can infer because there is a maximum point and the behavior of values around it), the range of [tex]\( g(x) \)[/tex] will include all values from the maximum value downwards.
Therefore, the range of [tex]\( g(x) \)[/tex] is:
[tex]\[ \text{All real numbers less than or equal to} \ \frac{19}{4} \][/tex]
Given the options:
A. All real numbers less than or equal to [tex]\(\frac{3}{2}\)[/tex].
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
C. All real numbers greater than or equal to [tex]\(\frac{3}{2}\)[/tex].
D. All real numbers greater than or equal to [tex]\(\frac{19}{4}\)[/tex].
The correct answer is:
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
Firstly, let's identify the values of [tex]\( g(x) \)[/tex] from the table:
- [tex]\( g\left(\frac{1}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(1) = 4 \)[/tex]
- [tex]\( g\left(\frac{3}{2}\right) = \frac{19}{4} \)[/tex]
- [tex]\( g(2) = 4 \)[/tex]
- [tex]\( g\left(\frac{5}{2}\right) = \frac{7}{4} \)[/tex]
- [tex]\( g(3) = -2 \)[/tex]
We now collect all these values to form a list:
[tex]\[ g(x) = \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} \][/tex]
Next, let's determine the maximum value among these:
[tex]\[ \max \left\{ \frac{7}{4}, 4, \frac{19}{4}, 4, \frac{7}{4}, -2 \right\} = \frac{19}{4} \][/tex]
As the quadratic function opens downwards (we can infer because there is a maximum point and the behavior of values around it), the range of [tex]\( g(x) \)[/tex] will include all values from the maximum value downwards.
Therefore, the range of [tex]\( g(x) \)[/tex] is:
[tex]\[ \text{All real numbers less than or equal to} \ \frac{19}{4} \][/tex]
Given the options:
A. All real numbers less than or equal to [tex]\(\frac{3}{2}\)[/tex].
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
C. All real numbers greater than or equal to [tex]\(\frac{3}{2}\)[/tex].
D. All real numbers greater than or equal to [tex]\(\frac{19}{4}\)[/tex].
The correct answer is:
B. All real numbers less than or equal to [tex]\(\frac{19}{4}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.