Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the given inequalities [tex]\(2x - 1 < 7\)[/tex] and [tex]\(5x + 3 < 3\)[/tex], we will address each inequality step-by-step and then find the intersection of their solution sets.
### Solving the First Inequality: [tex]\(2x - 1 < 7\)[/tex]
1. Add 1 to both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 2x - 1 + 1 < 7 + 1 \][/tex]
Simplifying, we get:
[tex]\[ 2x < 8 \][/tex]
2. Divide both sides of the inequality by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{8}{2} \][/tex]
Simplifying, we get:
[tex]\[ x < 4 \][/tex]
### Solving the Second Inequality: [tex]\(5x + 3 < 3\)[/tex]
1. Subtract 3 from both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 5x + 3 - 3 < 3 - 3 \][/tex]
Simplifying, we get:
[tex]\[ 5x < 0 \][/tex]
2. Divide both sides of the inequality by 5 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{5x}{5} < \frac{0}{5} \][/tex]
Simplifying, we get:
[tex]\[ x < 0 \][/tex]
### Intersection of the Solution Sets
We have now obtained the solution sets for both inequalities:
1. From [tex]\(2x - 1 < 7\)[/tex], we have [tex]\(x < 4\)[/tex].
2. From [tex]\(5x + 3 < 3\)[/tex], we have [tex]\(x < 0\)[/tex].
The final solution is the intersection of these two sets, which means the values of [tex]\(x\)[/tex] that satisfy both inequalities simultaneously.
The solution to [tex]\(x < 4\)[/tex] and [tex]\(x < 0\)[/tex] is:
[tex]\[ x < 0 \][/tex]
Hence, the solution set is [tex]\(\{x \mid x < 0\}\)[/tex].
### Solving the First Inequality: [tex]\(2x - 1 < 7\)[/tex]
1. Add 1 to both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 2x - 1 + 1 < 7 + 1 \][/tex]
Simplifying, we get:
[tex]\[ 2x < 8 \][/tex]
2. Divide both sides of the inequality by 2 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{2x}{2} < \frac{8}{2} \][/tex]
Simplifying, we get:
[tex]\[ x < 4 \][/tex]
### Solving the Second Inequality: [tex]\(5x + 3 < 3\)[/tex]
1. Subtract 3 from both sides of the inequality to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 5x + 3 - 3 < 3 - 3 \][/tex]
Simplifying, we get:
[tex]\[ 5x < 0 \][/tex]
2. Divide both sides of the inequality by 5 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{5x}{5} < \frac{0}{5} \][/tex]
Simplifying, we get:
[tex]\[ x < 0 \][/tex]
### Intersection of the Solution Sets
We have now obtained the solution sets for both inequalities:
1. From [tex]\(2x - 1 < 7\)[/tex], we have [tex]\(x < 4\)[/tex].
2. From [tex]\(5x + 3 < 3\)[/tex], we have [tex]\(x < 0\)[/tex].
The final solution is the intersection of these two sets, which means the values of [tex]\(x\)[/tex] that satisfy both inequalities simultaneously.
The solution to [tex]\(x < 4\)[/tex] and [tex]\(x < 0\)[/tex] is:
[tex]\[ x < 0 \][/tex]
Hence, the solution set is [tex]\(\{x \mid x < 0\}\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.