At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which expression is equivalent to [tex]\(\left(\frac{x^2-25}{x+4}\right) \div\left(\frac{x+5}{x-5}\right)\)[/tex], let's follow these steps.
1. Rewrite the division as multiplication by the reciprocal:
[tex]\[ \left(\frac{x^2-25}{x+4}\right) \div \left(\frac{x+5}{x-5}\right) = \left(\frac{x^2-25}{x+4}\right) \times \left(\frac{x-5}{x+5}\right) \][/tex]
2. Factor the numerator [tex]\(x^2 - 25\)[/tex]:
[tex]\[ x^2 - 25 = (x + 5)(x - 5) \][/tex]
This re-writes our expression as:
[tex]\[ \left(\frac{(x+5)(x-5)}{x+4}\right) \times \left(\frac{x-5}{x+5}\right) \][/tex]
3. Combine the fractions:
[tex]\[ \frac{(x+5)(x-5)}{x+4} \times \frac{x-5}{x+5} = \frac{(x+5)(x-5) \cdot (x-5)}{(x+4)(x+5)} \][/tex]
4. Simplify the expression by canceling common factors in the numerator and the denominator:
- The factor [tex]\((x+5)\)[/tex] in the numerator and the denominator cancel out.
- The expression now looks like this:
[tex]\[ = \frac{(x-5)^2}{x+4} \][/tex]
Therefore, the simplified expression is:
[tex]\[ \frac{(x-5)^2}{x+4} \][/tex]
Upon comparing with the given choices:
A. [tex]\(\frac{x+4}{(x+5)^2}\)[/tex]
B. [tex]\(\frac{x+4}{(x-5)^2}\)[/tex]
C. [tex]\(\frac{(x+5)^2}{x+4}\)[/tex]
D. [tex]\(\frac{(x-5)^2}{x+4}\)[/tex]
The correct choice is:
[tex]\[ \boxed{D} \][/tex]
1. Rewrite the division as multiplication by the reciprocal:
[tex]\[ \left(\frac{x^2-25}{x+4}\right) \div \left(\frac{x+5}{x-5}\right) = \left(\frac{x^2-25}{x+4}\right) \times \left(\frac{x-5}{x+5}\right) \][/tex]
2. Factor the numerator [tex]\(x^2 - 25\)[/tex]:
[tex]\[ x^2 - 25 = (x + 5)(x - 5) \][/tex]
This re-writes our expression as:
[tex]\[ \left(\frac{(x+5)(x-5)}{x+4}\right) \times \left(\frac{x-5}{x+5}\right) \][/tex]
3. Combine the fractions:
[tex]\[ \frac{(x+5)(x-5)}{x+4} \times \frac{x-5}{x+5} = \frac{(x+5)(x-5) \cdot (x-5)}{(x+4)(x+5)} \][/tex]
4. Simplify the expression by canceling common factors in the numerator and the denominator:
- The factor [tex]\((x+5)\)[/tex] in the numerator and the denominator cancel out.
- The expression now looks like this:
[tex]\[ = \frac{(x-5)^2}{x+4} \][/tex]
Therefore, the simplified expression is:
[tex]\[ \frac{(x-5)^2}{x+4} \][/tex]
Upon comparing with the given choices:
A. [tex]\(\frac{x+4}{(x+5)^2}\)[/tex]
B. [tex]\(\frac{x+4}{(x-5)^2}\)[/tex]
C. [tex]\(\frac{(x+5)^2}{x+4}\)[/tex]
D. [tex]\(\frac{(x-5)^2}{x+4}\)[/tex]
The correct choice is:
[tex]\[ \boxed{D} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.