Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which expression is equivalent to [tex]\(\frac{x^2+5 x+6}{x^2+7 x+10} \div \frac{x+4}{x-1}\)[/tex], we should follow these steps:
1. Rewrite the Division as Multiplication by the Reciprocal:
Division of fractions is the same as multiplication by the reciprocal. Therefore, we rewrite the given expression as:
[tex]\[ \frac{x^2+5 x+6}{x^2+7 x+10} \div \frac{x+4}{x-1} = \frac{x^2+5 x+6}{x^2+7 x+10} \times \frac{x-1}{x+4} \][/tex]
2. Multiply the Fractions:
To multiply fractions, we multiply the numerators together and the denominators together:
[tex]\[ \frac{(x^2+5 x+6) \cdot (x-1)}{(x^2+7 x+10) \cdot (x+4)} \][/tex]
3. Factorize the Expressions:
Before multiplying, it helps to factorize the polynomials to simplify the expression.
- The numerator [tex]\(x^2 + 5x + 6\)[/tex] factors as: [tex]\((x+2)(x+3)\)[/tex]
- The denominator [tex]\(x^2 + 7x + 10\)[/tex] factors as: [tex]\((x+2)(x+5)\)[/tex]
- Now we substitute these factorizations into our expression:
[tex]\[ \frac{(x+2)(x+3) \cdot (x-1)}{(x+2)(x+5) \cdot (x+4)} \][/tex]
4. Simplify the Expression:
We can cancel out the common factor [tex]\((x+2)\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{(x+3)(x-1)}{(x+5)(x+4)} \][/tex]
5. Expand Both Numerator and Denominator:
Finally, expand the remaining factors to get a single polynomial expression in the numerator and the denominator:
- Numerator: [tex]\((x+3)(x-1) = x^2 + 2x - 3\)[/tex]
- Denominator: [tex]\((x+5)(x+4) = x^2 + 9x + 20\)[/tex]
Therefore, the resulting simplified expression is:
[tex]\[ \frac{x^2 + 2x - 3}{x^2 + 9x + 20} \][/tex]
Thus, the expression equivalent to [tex]\(\frac{x^2+5 x+6}{x^2+7 x+10} \div \frac{x+4}{x-1}\)[/tex] is:
Answer: C. [tex]\(\frac{x^2 + 2x - 3}{x^2 + 9x + 20}\)[/tex]
1. Rewrite the Division as Multiplication by the Reciprocal:
Division of fractions is the same as multiplication by the reciprocal. Therefore, we rewrite the given expression as:
[tex]\[ \frac{x^2+5 x+6}{x^2+7 x+10} \div \frac{x+4}{x-1} = \frac{x^2+5 x+6}{x^2+7 x+10} \times \frac{x-1}{x+4} \][/tex]
2. Multiply the Fractions:
To multiply fractions, we multiply the numerators together and the denominators together:
[tex]\[ \frac{(x^2+5 x+6) \cdot (x-1)}{(x^2+7 x+10) \cdot (x+4)} \][/tex]
3. Factorize the Expressions:
Before multiplying, it helps to factorize the polynomials to simplify the expression.
- The numerator [tex]\(x^2 + 5x + 6\)[/tex] factors as: [tex]\((x+2)(x+3)\)[/tex]
- The denominator [tex]\(x^2 + 7x + 10\)[/tex] factors as: [tex]\((x+2)(x+5)\)[/tex]
- Now we substitute these factorizations into our expression:
[tex]\[ \frac{(x+2)(x+3) \cdot (x-1)}{(x+2)(x+5) \cdot (x+4)} \][/tex]
4. Simplify the Expression:
We can cancel out the common factor [tex]\((x+2)\)[/tex] in the numerator and the denominator:
[tex]\[ \frac{(x+3)(x-1)}{(x+5)(x+4)} \][/tex]
5. Expand Both Numerator and Denominator:
Finally, expand the remaining factors to get a single polynomial expression in the numerator and the denominator:
- Numerator: [tex]\((x+3)(x-1) = x^2 + 2x - 3\)[/tex]
- Denominator: [tex]\((x+5)(x+4) = x^2 + 9x + 20\)[/tex]
Therefore, the resulting simplified expression is:
[tex]\[ \frac{x^2 + 2x - 3}{x^2 + 9x + 20} \][/tex]
Thus, the expression equivalent to [tex]\(\frac{x^2+5 x+6}{x^2+7 x+10} \div \frac{x+4}{x-1}\)[/tex] is:
Answer: C. [tex]\(\frac{x^2 + 2x - 3}{x^2 + 9x + 20}\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.