Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which equation can be used to solve for angle [tex]\( A \)[/tex], let's start by identifying the relevant components in the given problem.
We have:
- Side [tex]\( a = 2.4 \)[/tex] meters
- Side [tex]\( b = 3.2 \)[/tex] meters
- Side [tex]\( c = 4.6 \)[/tex] meters, which is the distance between the two teams
- Angle [tex]\( C = 110^\circ \)[/tex], which is the angle between the ropes where the chest is located
Using the law of sines, we have the following relationship:
[tex]\[ \frac{\sin(A)}{a} = \frac{\sin(C)}{c} \quad \text{or} \quad \frac{\sin(A)}{a} = \frac{\sin(110^\circ)}{4.6} \][/tex]
Given that [tex]\( a = 2.4 \)[/tex] meters, we can substitute [tex]\( a \)[/tex] and [tex]\( C = 110^\circ \)[/tex] into the equation to solve for angle [tex]\( A \)[/tex]:
[tex]\[ \frac{\sin(A)}{2.4} = \frac{\sin(110^\circ)}{4.6} \][/tex]
Therefore, the correct equation to use to solve for angle [tex]\(A\)[/tex] is:
[tex]\[ \frac{\sin(A)}{2.4} = \frac{\sin \left(110^\circ\right)}{4.6} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\frac{\sin (A)}{2.4}=\frac{\sin \left(110^{\circ}\right)}{4.6}} \][/tex]
We have:
- Side [tex]\( a = 2.4 \)[/tex] meters
- Side [tex]\( b = 3.2 \)[/tex] meters
- Side [tex]\( c = 4.6 \)[/tex] meters, which is the distance between the two teams
- Angle [tex]\( C = 110^\circ \)[/tex], which is the angle between the ropes where the chest is located
Using the law of sines, we have the following relationship:
[tex]\[ \frac{\sin(A)}{a} = \frac{\sin(C)}{c} \quad \text{or} \quad \frac{\sin(A)}{a} = \frac{\sin(110^\circ)}{4.6} \][/tex]
Given that [tex]\( a = 2.4 \)[/tex] meters, we can substitute [tex]\( a \)[/tex] and [tex]\( C = 110^\circ \)[/tex] into the equation to solve for angle [tex]\( A \)[/tex]:
[tex]\[ \frac{\sin(A)}{2.4} = \frac{\sin(110^\circ)}{4.6} \][/tex]
Therefore, the correct equation to use to solve for angle [tex]\(A\)[/tex] is:
[tex]\[ \frac{\sin(A)}{2.4} = \frac{\sin \left(110^\circ\right)}{4.6} \][/tex]
Thus, the answer is:
[tex]\[ \boxed{\frac{\sin (A)}{2.4}=\frac{\sin \left(110^{\circ}\right)}{4.6}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.