Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Assume that [tex]$x$[/tex] and [tex]$y$[/tex] are both differentiable functions of [tex][tex]$t$[/tex][/tex]. Find the required values of [tex]$\frac{dy}{dt}$[/tex] and [tex]$\frac{dx}{dt}$[/tex].

[tex]y = \sqrt{x}[/tex]

(a) Find [tex][tex]$\frac{dy}{dt}$[/tex][/tex], given [tex]$x = 16$[/tex] and [tex]$\frac{dx}{dt} = 2$[/tex].

[tex]\frac{dy}{dt} = \square[/tex]

(b) Find [tex][tex]$\frac{dx}{dt}$[/tex][/tex], given [tex]$x = 64$[/tex] and [tex]$\frac{dy}{dt} = 5$[/tex].

[tex]\frac{dx}{dt} = \square[/tex]


Sagot :

Certainly! Let's solve the problem step-by-step for each part.

### (a) Finding [tex]\(\frac{dy}{dt}\)[/tex] given [tex]\(x = 16\)[/tex] and [tex]\(\frac{dx}{dt} = 2\)[/tex]

Given the relationship:
[tex]\[ y = \sqrt{x} \][/tex]

To find [tex]\(\frac{dy}{dt}\)[/tex], we use the chain rule. The chain rule states:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \][/tex]

First, we need to find [tex]\(\frac{dy}{dx}\)[/tex]. Differentiating [tex]\(y = \sqrt{x}\)[/tex] with respect to [tex]\(x\)[/tex]:
[tex]\[ y = x^{1/2} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2} \cdot \frac{1}{\sqrt{x}} \][/tex]

Now, substituting [tex]\(x = 16\)[/tex]:
[tex]\[ \frac{dy}{dx} \Bigg|_{x = 16} = \frac{1}{2} \cdot \frac{1}{\sqrt{16}} = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \][/tex]

We are given [tex]\(\frac{dx}{dt} = 2\)[/tex]. Therefore, we can find [tex]\(\frac{dy}{dt}\)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{1}{8} \cdot 2 = \frac{1}{4} \][/tex]
[tex]\[ \frac{dy}{dt} = 0.25 \][/tex]

So, [tex]\(\boxed{0.25}\)[/tex] is the value of [tex]\(\frac{dy}{dt}\)[/tex] for part (a).

### (b) Finding [tex]\(\frac{dx}{dt}\)[/tex] given [tex]\(x = 64\)[/tex] and [tex]\(\frac{dy}{dt} = 5\)[/tex]

Given the relationship:
[tex]\[ y = \sqrt{x} \][/tex]

Using the chain rule again:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \][/tex]

We need to find [tex]\(\frac{dx}{dt}\)[/tex]. First, focusing on [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2} \cdot \frac{1}{\sqrt{x}} \][/tex]

Now, substituting [tex]\(x = 64\)[/tex]:
[tex]\[ \frac{dy}{dx} \Bigg|_{x = 64} = \frac{1}{2} \cdot \frac{1}{\sqrt{64}} = \frac{1}{2} \cdot \frac{1}{8} = \frac{1}{16} \][/tex]

Given [tex]\(\frac{dy}{dt} = 5\)[/tex], we solve for [tex]\(\frac{dx}{dt}\)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{1}{16} \cdot \frac{dx}{dt} \][/tex]
[tex]\[ 5 = \frac{1}{16} \cdot \frac{dx}{dt} \][/tex]
[tex]\[ \frac{dx}{dt} = 5 \cdot 16 = 80 \][/tex]

So, [tex]\(\boxed{80}\)[/tex] is the value of [tex]\(\frac{dx}{dt}\)[/tex] for part (b).

In summary:
- For part (a), [tex]\(\frac{dy}{dt} = 0.25\)[/tex]
- For part (b), [tex]\(\frac{dx}{dt} = 80\)[/tex]