Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Assume that [tex]$x$[/tex] and [tex]$y$[/tex] are both differentiable functions of [tex][tex]$t$[/tex][/tex]. Find the required values of [tex]$\frac{dy}{dt}$[/tex] and [tex]$\frac{dx}{dt}$[/tex].

[tex]y = \sqrt{x}[/tex]

(a) Find [tex][tex]$\frac{dy}{dt}$[/tex][/tex], given [tex]$x = 16$[/tex] and [tex]$\frac{dx}{dt} = 2$[/tex].

[tex]\frac{dy}{dt} = \square[/tex]

(b) Find [tex][tex]$\frac{dx}{dt}$[/tex][/tex], given [tex]$x = 64$[/tex] and [tex]$\frac{dy}{dt} = 5$[/tex].

[tex]\frac{dx}{dt} = \square[/tex]


Sagot :

Certainly! Let's solve the problem step-by-step for each part.

### (a) Finding [tex]\(\frac{dy}{dt}\)[/tex] given [tex]\(x = 16\)[/tex] and [tex]\(\frac{dx}{dt} = 2\)[/tex]

Given the relationship:
[tex]\[ y = \sqrt{x} \][/tex]

To find [tex]\(\frac{dy}{dt}\)[/tex], we use the chain rule. The chain rule states:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \][/tex]

First, we need to find [tex]\(\frac{dy}{dx}\)[/tex]. Differentiating [tex]\(y = \sqrt{x}\)[/tex] with respect to [tex]\(x\)[/tex]:
[tex]\[ y = x^{1/2} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2} \cdot \frac{1}{\sqrt{x}} \][/tex]

Now, substituting [tex]\(x = 16\)[/tex]:
[tex]\[ \frac{dy}{dx} \Bigg|_{x = 16} = \frac{1}{2} \cdot \frac{1}{\sqrt{16}} = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \][/tex]

We are given [tex]\(\frac{dx}{dt} = 2\)[/tex]. Therefore, we can find [tex]\(\frac{dy}{dt}\)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = \frac{1}{8} \cdot 2 = \frac{1}{4} \][/tex]
[tex]\[ \frac{dy}{dt} = 0.25 \][/tex]

So, [tex]\(\boxed{0.25}\)[/tex] is the value of [tex]\(\frac{dy}{dt}\)[/tex] for part (a).

### (b) Finding [tex]\(\frac{dx}{dt}\)[/tex] given [tex]\(x = 64\)[/tex] and [tex]\(\frac{dy}{dt} = 5\)[/tex]

Given the relationship:
[tex]\[ y = \sqrt{x} \][/tex]

Using the chain rule again:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \][/tex]

We need to find [tex]\(\frac{dx}{dt}\)[/tex]. First, focusing on [tex]\(\frac{dy}{dx}\)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2} \cdot \frac{1}{\sqrt{x}} \][/tex]

Now, substituting [tex]\(x = 64\)[/tex]:
[tex]\[ \frac{dy}{dx} \Bigg|_{x = 64} = \frac{1}{2} \cdot \frac{1}{\sqrt{64}} = \frac{1}{2} \cdot \frac{1}{8} = \frac{1}{16} \][/tex]

Given [tex]\(\frac{dy}{dt} = 5\)[/tex], we solve for [tex]\(\frac{dx}{dt}\)[/tex]:
[tex]\[ \frac{dy}{dt} = \frac{1}{16} \cdot \frac{dx}{dt} \][/tex]
[tex]\[ 5 = \frac{1}{16} \cdot \frac{dx}{dt} \][/tex]
[tex]\[ \frac{dx}{dt} = 5 \cdot 16 = 80 \][/tex]

So, [tex]\(\boxed{80}\)[/tex] is the value of [tex]\(\frac{dx}{dt}\)[/tex] for part (b).

In summary:
- For part (a), [tex]\(\frac{dy}{dt} = 0.25\)[/tex]
- For part (b), [tex]\(\frac{dx}{dt} = 80\)[/tex]