Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's work through the given properties step-by-step and identify the functions that satisfy each of them:
1. The domain is all real numbers.
- A function with a domain of all real numbers can be a variety of common functions including linear, quadratic, polynomial, exponential, etc.
- One simple example is the quadratic function:
[tex]\[ f(x) = x^2 \][/tex]
This function is defined for all real numbers.
2. An [tex]\(x\)[/tex]-intercept is [tex]\((\pi, 0)\)[/tex].
- An [tex]\(x\)[/tex]-intercept is a point where the function crosses the x-axis, meaning the output of the function is zero at that point:
[tex]\[ f(\pi) = 0 \][/tex]
- A function that satisfies this condition is the sine function, since:
[tex]\[ \sin(\pi) = 0 \][/tex]
Therefore, the function is:
[tex]\[ f(x) = \sin(x) \][/tex]
3. The minimum value is -1.
- A function whose minimum value is -1 achieves this value somewhere in its domain.
- The sine function has a minimum value of -1, as the sine of an angle ranges from -1 to 1:
[tex]\[ \min(\sin(x)) = -1 \][/tex]
Thus, the function is:
[tex]\[ f(x) = \sin(x) \][/tex]
4. An [tex]\(x\)[/tex]-intercept is [tex]\(\left(\frac{\pi}{2}, 0\right)\)[/tex].
- Similarly, to have an [tex]\(x\)[/tex]-intercept at [tex]\(\left(\frac{\pi}{2}, 0\right)\)[/tex], the function must satisfy:
[tex]\[ f\left(\frac{\pi}{2}\right) = 0 \][/tex]
- The cosine function meets this condition because:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
Therefore, the function is:
[tex]\[ f(x) = \cos(x) \][/tex]
Summarizing all the functions that satisfy the given properties:
1. For all real numbers domain: [tex]\(x^2\)[/tex]
2. For [tex]\(x\)[/tex]-intercept at [tex]\((\pi, 0)\)[/tex]: [tex]\(\sin(x)\)[/tex]
3. For the minimum value of -1: [tex]\(\sin(x)\)[/tex]
4. For [tex]\(x\)[/tex]-intercept at [tex]\(\left(\frac{\pi}{2}, 0\right)\)[/tex]: [tex]\(\cos(x)\)[/tex]
Thus, the functions that meet each specific property are:
[tex]\[ (\text{x}^2, \; \sin(x), \; \sin(x), \; \cos(x)) \][/tex]
1. The domain is all real numbers.
- A function with a domain of all real numbers can be a variety of common functions including linear, quadratic, polynomial, exponential, etc.
- One simple example is the quadratic function:
[tex]\[ f(x) = x^2 \][/tex]
This function is defined for all real numbers.
2. An [tex]\(x\)[/tex]-intercept is [tex]\((\pi, 0)\)[/tex].
- An [tex]\(x\)[/tex]-intercept is a point where the function crosses the x-axis, meaning the output of the function is zero at that point:
[tex]\[ f(\pi) = 0 \][/tex]
- A function that satisfies this condition is the sine function, since:
[tex]\[ \sin(\pi) = 0 \][/tex]
Therefore, the function is:
[tex]\[ f(x) = \sin(x) \][/tex]
3. The minimum value is -1.
- A function whose minimum value is -1 achieves this value somewhere in its domain.
- The sine function has a minimum value of -1, as the sine of an angle ranges from -1 to 1:
[tex]\[ \min(\sin(x)) = -1 \][/tex]
Thus, the function is:
[tex]\[ f(x) = \sin(x) \][/tex]
4. An [tex]\(x\)[/tex]-intercept is [tex]\(\left(\frac{\pi}{2}, 0\right)\)[/tex].
- Similarly, to have an [tex]\(x\)[/tex]-intercept at [tex]\(\left(\frac{\pi}{2}, 0\right)\)[/tex], the function must satisfy:
[tex]\[ f\left(\frac{\pi}{2}\right) = 0 \][/tex]
- The cosine function meets this condition because:
[tex]\[ \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
Therefore, the function is:
[tex]\[ f(x) = \cos(x) \][/tex]
Summarizing all the functions that satisfy the given properties:
1. For all real numbers domain: [tex]\(x^2\)[/tex]
2. For [tex]\(x\)[/tex]-intercept at [tex]\((\pi, 0)\)[/tex]: [tex]\(\sin(x)\)[/tex]
3. For the minimum value of -1: [tex]\(\sin(x)\)[/tex]
4. For [tex]\(x\)[/tex]-intercept at [tex]\(\left(\frac{\pi}{2}, 0\right)\)[/tex]: [tex]\(\cos(x)\)[/tex]
Thus, the functions that meet each specific property are:
[tex]\[ (\text{x}^2, \; \sin(x), \; \sin(x), \; \cos(x)) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.