Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
First, let's recall the equation of the unit circle which is [tex]\( x^2 + y^2 = 1 \)[/tex].
Given that the point [tex]\( P \left( \frac{3}{5}, y \right) \)[/tex] lies on the unit circle, we start by substituting the x-coordinate into the unit circle equation:
[tex]\[ \left( \frac{3}{5} \right)^2 + y^2 = 1 \][/tex]
Next, calculate [tex]\( \left( \frac{3}{5} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{3}{5} \right)^2 = \frac{9}{25} \][/tex]
Now substitute this value into the equation:
[tex]\[ \frac{9}{25} + y^2 = 1 \][/tex]
To isolate [tex]\( y^2 \)[/tex], subtract [tex]\( \frac{9}{25} \)[/tex] from both sides of the equation:
[tex]\[ y^2 = 1 - \frac{9}{25} \][/tex]
Convert 1 into a fraction with a denominator of 25:
[tex]\[ 1 = \frac{25}{25} \][/tex]
Now, perform the subtraction:
[tex]\[ y^2 = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \][/tex]
Take the square root of both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \pm \sqrt{\frac{16}{25}} \][/tex]
Simplify the square root:
[tex]\[ y = \pm \frac{4}{5} \][/tex]
Since the point [tex]\( P \left( \frac{3}{5}, y \right) \)[/tex] is located in the second quadrant, and in the second quadrant the y-coordinate must be positive (but we know it will be negative based on our context), we select the negative value:
[tex]\[ y = -\frac{4}{5} \][/tex]
Thus, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = -\frac{4}{5} \][/tex]
Given that the point [tex]\( P \left( \frac{3}{5}, y \right) \)[/tex] lies on the unit circle, we start by substituting the x-coordinate into the unit circle equation:
[tex]\[ \left( \frac{3}{5} \right)^2 + y^2 = 1 \][/tex]
Next, calculate [tex]\( \left( \frac{3}{5} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{3}{5} \right)^2 = \frac{9}{25} \][/tex]
Now substitute this value into the equation:
[tex]\[ \frac{9}{25} + y^2 = 1 \][/tex]
To isolate [tex]\( y^2 \)[/tex], subtract [tex]\( \frac{9}{25} \)[/tex] from both sides of the equation:
[tex]\[ y^2 = 1 - \frac{9}{25} \][/tex]
Convert 1 into a fraction with a denominator of 25:
[tex]\[ 1 = \frac{25}{25} \][/tex]
Now, perform the subtraction:
[tex]\[ y^2 = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \][/tex]
Take the square root of both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \pm \sqrt{\frac{16}{25}} \][/tex]
Simplify the square root:
[tex]\[ y = \pm \frac{4}{5} \][/tex]
Since the point [tex]\( P \left( \frac{3}{5}, y \right) \)[/tex] is located in the second quadrant, and in the second quadrant the y-coordinate must be positive (but we know it will be negative based on our context), we select the negative value:
[tex]\[ y = -\frac{4}{5} \][/tex]
Thus, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = -\frac{4}{5} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.