Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this question, we'll go through the following steps:
1. Calculate the differences between the scores with and without the coach for each player.
Given data:
- "With" scores: [tex]\([17, 20, 19, 18, 19, 19, 20, 20, 16, 17]\)[/tex]
- "Without" scores: [tex]\([16.5, 18, 19, 17.5, 20, 17.5, 19, 19.5, 14, 15.5]\)[/tex]
The differences (With - Without) are:
[tex]$ [0.5, 2, 0, 0.5, -1, 1.5, 1, 0.5, 2, 1.5] $[/tex]
2. Calculate the mean of the differences.
The mean difference ([tex]\(\bar{x}_{\text{diff}}\)[/tex]) is calculated by taking the sum of all differences and dividing by the number of players (10 in this case).
Sum of differences:
[tex]$ 0.5 + 2 + 0 + 0.5 - 1 + 1.5 + 1 + 0.5 + 2 + 1.5 = 8.5 $[/tex]
Mean difference ([tex]\(\bar{x}_{\text{diff}}\)[/tex]):
[tex]$ \bar{x}_{\text{diff}} = \frac{8.5}{10} = 0.85 $[/tex]
So, the mean difference rounded to 2 decimal places is:
[tex]$ \bar{x}_{\text{diff}} = 0.85 $[/tex]
3. Calculate the standard deviation of the differences.
The standard deviation of the differences ([tex]\(S_{\text{diff}}\)[/tex]) measures the amount of variation or dispersion of the differences from the mean.
Sample standard deviation formula (since we are working with a sample, not a population):
[tex]$ S_{\text{diff}} = \sqrt{\frac{\sum (x_i - \bar{x}_{\text{diff}})^2}{n-1}} $[/tex]
Here, [tex]\( n = 10 \)[/tex], so:
[tex]$ S_{\text{diff}} = \sqrt{\frac{\sum (x_i - 0.85)^2}{10-1}} $[/tex]
Calculations for each difference's squared deviation from the mean:
[tex]\[ \begin{align*} (0.5 - 0.85)^2 &= 0.1225 \\ (2 - 0.85)^2 &= 1.3225 \\ (0 - 0.85)^2 &= 0.7225 \\ (0.5 - 0.85)^2 &= 0.1225 \\ (-1 - 0.85)^2 &= 3.4225 \\ (1.5 - 0.85)^2 &= 0.4225 \\ (1 - 0.85)^2 &= 0.0225 \\ (0.5 - 0.85)^2 &= 0.1225 \\ (2 - 0.85)^2 &= 1.3225 \\ (1.5 - 0.85)^2 &= 0.4225 \\ \end{align*} \][/tex]
Sum of these squared deviations:
[tex]$ 0.1225 + 1.3225 + 0.7225 + 0.1225 + 3.4225 + 0.4225 + 0.0225 + 0.1225 + 1.3225 + 0.4225 = 8.0245 $[/tex]
Now, divide by [tex]\( n-1 = 9 \)[/tex]:
[tex]$ \frac{8.0245}{9} = 0.8916 $[/tex]
Finally, take the square root to get the standard deviation:
[tex]$ S_{\text{diff}} = \sqrt{0.8916} \approx 0.944 $[/tex]
So, the standard deviation rounded to 3 decimal places is:
[tex]$ S_{\text{diff}} = 0.944 $[/tex]
4. Count the number of differences.
Given that there are 10 players, the number of differences ([tex]\(n_{\text{diff}}\)[/tex]) is:
[tex]$ n_{\text{diff}} = 10 $[/tex]
To summarize, we found:
[tex]\[ \begin{align*} \bar{x}_{\text{diff}} &= 0.85 \\ S_{\text{diff}} &= 0.944 \\ n_{\text{diff}} &= 10 \end{align*} \][/tex]
Thus, the final answers are:
[tex]\[ \begin{align*} \bar{x}_{\text{diff}} &= 0.85 \\ S_{\text{diff}} &= 0.944 \\ n_{\text{diff}} &= 10 \end{align*} \][/tex]
1. Calculate the differences between the scores with and without the coach for each player.
Given data:
- "With" scores: [tex]\([17, 20, 19, 18, 19, 19, 20, 20, 16, 17]\)[/tex]
- "Without" scores: [tex]\([16.5, 18, 19, 17.5, 20, 17.5, 19, 19.5, 14, 15.5]\)[/tex]
The differences (With - Without) are:
[tex]$ [0.5, 2, 0, 0.5, -1, 1.5, 1, 0.5, 2, 1.5] $[/tex]
2. Calculate the mean of the differences.
The mean difference ([tex]\(\bar{x}_{\text{diff}}\)[/tex]) is calculated by taking the sum of all differences and dividing by the number of players (10 in this case).
Sum of differences:
[tex]$ 0.5 + 2 + 0 + 0.5 - 1 + 1.5 + 1 + 0.5 + 2 + 1.5 = 8.5 $[/tex]
Mean difference ([tex]\(\bar{x}_{\text{diff}}\)[/tex]):
[tex]$ \bar{x}_{\text{diff}} = \frac{8.5}{10} = 0.85 $[/tex]
So, the mean difference rounded to 2 decimal places is:
[tex]$ \bar{x}_{\text{diff}} = 0.85 $[/tex]
3. Calculate the standard deviation of the differences.
The standard deviation of the differences ([tex]\(S_{\text{diff}}\)[/tex]) measures the amount of variation or dispersion of the differences from the mean.
Sample standard deviation formula (since we are working with a sample, not a population):
[tex]$ S_{\text{diff}} = \sqrt{\frac{\sum (x_i - \bar{x}_{\text{diff}})^2}{n-1}} $[/tex]
Here, [tex]\( n = 10 \)[/tex], so:
[tex]$ S_{\text{diff}} = \sqrt{\frac{\sum (x_i - 0.85)^2}{10-1}} $[/tex]
Calculations for each difference's squared deviation from the mean:
[tex]\[ \begin{align*} (0.5 - 0.85)^2 &= 0.1225 \\ (2 - 0.85)^2 &= 1.3225 \\ (0 - 0.85)^2 &= 0.7225 \\ (0.5 - 0.85)^2 &= 0.1225 \\ (-1 - 0.85)^2 &= 3.4225 \\ (1.5 - 0.85)^2 &= 0.4225 \\ (1 - 0.85)^2 &= 0.0225 \\ (0.5 - 0.85)^2 &= 0.1225 \\ (2 - 0.85)^2 &= 1.3225 \\ (1.5 - 0.85)^2 &= 0.4225 \\ \end{align*} \][/tex]
Sum of these squared deviations:
[tex]$ 0.1225 + 1.3225 + 0.7225 + 0.1225 + 3.4225 + 0.4225 + 0.0225 + 0.1225 + 1.3225 + 0.4225 = 8.0245 $[/tex]
Now, divide by [tex]\( n-1 = 9 \)[/tex]:
[tex]$ \frac{8.0245}{9} = 0.8916 $[/tex]
Finally, take the square root to get the standard deviation:
[tex]$ S_{\text{diff}} = \sqrt{0.8916} \approx 0.944 $[/tex]
So, the standard deviation rounded to 3 decimal places is:
[tex]$ S_{\text{diff}} = 0.944 $[/tex]
4. Count the number of differences.
Given that there are 10 players, the number of differences ([tex]\(n_{\text{diff}}\)[/tex]) is:
[tex]$ n_{\text{diff}} = 10 $[/tex]
To summarize, we found:
[tex]\[ \begin{align*} \bar{x}_{\text{diff}} &= 0.85 \\ S_{\text{diff}} &= 0.944 \\ n_{\text{diff}} &= 10 \end{align*} \][/tex]
Thus, the final answers are:
[tex]\[ \begin{align*} \bar{x}_{\text{diff}} &= 0.85 \\ S_{\text{diff}} &= 0.944 \\ n_{\text{diff}} &= 10 \end{align*} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.