Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the function representing the total volume of water pumped, [tex]\( V(x) \)[/tex], we need to integrate the rate function, [tex]\( R(x) = 7x^5 + 5 \)[/tex]. The integration of [tex]\( R(x) \)[/tex] with respect to [tex]\( x \)[/tex] gives us the total volume of water pumped up to time [tex]\( x \)[/tex].
To find [tex]\( V(x) \)[/tex]:
1. Integrate [tex]\( R(x) = 7x^5 + 5 \)[/tex]:
[tex]\[ V(x) = \int (7x^5 + 5) \, dx \][/tex]
2. Calculate the integral:
[tex]\[ \int 7x^5 \, dx = \frac{7}{6}x^6 \][/tex]
[tex]\[ \int 5 \, dx = 5x \][/tex]
3. Combine the results:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x + C \][/tex]
Since the pump starts when time [tex]\( x \)[/tex] starts (typically at [tex]\( x = 0 \)[/tex]), the constant of integration [tex]\( C \)[/tex] is zero in the context of this problem. Thus:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
Next, to determine the total volume of water pumped between 3 and 7 minutes, we need to compute [tex]\( V(7) - V(3) \)[/tex].
1. Evaluate [tex]\( V(7) \)[/tex]:
[tex]\[ V(7) = \frac{7}{6} (7^6) + 5(7) \][/tex]
2. Evaluate [tex]\( V(3) \)[/tex]:
[tex]\[ V(3) = \frac{7}{6} (3^6) + 5(3) \][/tex]
3. Calculate the difference [tex]\( V(7) - V(3) \)[/tex]:
[tex]\[ V(7) - V(3) = \left( \frac{7}{6} (7^6) + 5(7) \right) - \left( \frac{7}{6} (3^6) + 5(3) \right) \][/tex]
After evaluating these expressions and computing the values:
[tex]\[ V(7) = 136423.5 \][/tex]
[tex]\[ V(3) = -3.17 \][/tex]
Thus, the total volume of water pumped between 3 and 7 minutes is approximately:
[tex]\[ 136426.67 \ liters \][/tex]
So, the function [tex]\( V(x) \)[/tex] is:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
And the total volume of water pumped between 3 and 7 minutes is:
[tex]\[ 136426.67 \ liters \][/tex]
Therefore:
- [tex]\( V(x) = \frac{7}{6} x^6 + 5x \)[/tex]
- The total volume of water pumped between 3 and 7 minutes is [tex]\( 136426.67 \)[/tex] liters
To find [tex]\( V(x) \)[/tex]:
1. Integrate [tex]\( R(x) = 7x^5 + 5 \)[/tex]:
[tex]\[ V(x) = \int (7x^5 + 5) \, dx \][/tex]
2. Calculate the integral:
[tex]\[ \int 7x^5 \, dx = \frac{7}{6}x^6 \][/tex]
[tex]\[ \int 5 \, dx = 5x \][/tex]
3. Combine the results:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x + C \][/tex]
Since the pump starts when time [tex]\( x \)[/tex] starts (typically at [tex]\( x = 0 \)[/tex]), the constant of integration [tex]\( C \)[/tex] is zero in the context of this problem. Thus:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
Next, to determine the total volume of water pumped between 3 and 7 minutes, we need to compute [tex]\( V(7) - V(3) \)[/tex].
1. Evaluate [tex]\( V(7) \)[/tex]:
[tex]\[ V(7) = \frac{7}{6} (7^6) + 5(7) \][/tex]
2. Evaluate [tex]\( V(3) \)[/tex]:
[tex]\[ V(3) = \frac{7}{6} (3^6) + 5(3) \][/tex]
3. Calculate the difference [tex]\( V(7) - V(3) \)[/tex]:
[tex]\[ V(7) - V(3) = \left( \frac{7}{6} (7^6) + 5(7) \right) - \left( \frac{7}{6} (3^6) + 5(3) \right) \][/tex]
After evaluating these expressions and computing the values:
[tex]\[ V(7) = 136423.5 \][/tex]
[tex]\[ V(3) = -3.17 \][/tex]
Thus, the total volume of water pumped between 3 and 7 minutes is approximately:
[tex]\[ 136426.67 \ liters \][/tex]
So, the function [tex]\( V(x) \)[/tex] is:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
And the total volume of water pumped between 3 and 7 minutes is:
[tex]\[ 136426.67 \ liters \][/tex]
Therefore:
- [tex]\( V(x) = \frac{7}{6} x^6 + 5x \)[/tex]
- The total volume of water pumped between 3 and 7 minutes is [tex]\( 136426.67 \)[/tex] liters
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.