At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the function representing the total volume of water pumped, [tex]\( V(x) \)[/tex], we need to integrate the rate function, [tex]\( R(x) = 7x^5 + 5 \)[/tex]. The integration of [tex]\( R(x) \)[/tex] with respect to [tex]\( x \)[/tex] gives us the total volume of water pumped up to time [tex]\( x \)[/tex].
To find [tex]\( V(x) \)[/tex]:
1. Integrate [tex]\( R(x) = 7x^5 + 5 \)[/tex]:
[tex]\[ V(x) = \int (7x^5 + 5) \, dx \][/tex]
2. Calculate the integral:
[tex]\[ \int 7x^5 \, dx = \frac{7}{6}x^6 \][/tex]
[tex]\[ \int 5 \, dx = 5x \][/tex]
3. Combine the results:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x + C \][/tex]
Since the pump starts when time [tex]\( x \)[/tex] starts (typically at [tex]\( x = 0 \)[/tex]), the constant of integration [tex]\( C \)[/tex] is zero in the context of this problem. Thus:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
Next, to determine the total volume of water pumped between 3 and 7 minutes, we need to compute [tex]\( V(7) - V(3) \)[/tex].
1. Evaluate [tex]\( V(7) \)[/tex]:
[tex]\[ V(7) = \frac{7}{6} (7^6) + 5(7) \][/tex]
2. Evaluate [tex]\( V(3) \)[/tex]:
[tex]\[ V(3) = \frac{7}{6} (3^6) + 5(3) \][/tex]
3. Calculate the difference [tex]\( V(7) - V(3) \)[/tex]:
[tex]\[ V(7) - V(3) = \left( \frac{7}{6} (7^6) + 5(7) \right) - \left( \frac{7}{6} (3^6) + 5(3) \right) \][/tex]
After evaluating these expressions and computing the values:
[tex]\[ V(7) = 136423.5 \][/tex]
[tex]\[ V(3) = -3.17 \][/tex]
Thus, the total volume of water pumped between 3 and 7 minutes is approximately:
[tex]\[ 136426.67 \ liters \][/tex]
So, the function [tex]\( V(x) \)[/tex] is:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
And the total volume of water pumped between 3 and 7 minutes is:
[tex]\[ 136426.67 \ liters \][/tex]
Therefore:
- [tex]\( V(x) = \frac{7}{6} x^6 + 5x \)[/tex]
- The total volume of water pumped between 3 and 7 minutes is [tex]\( 136426.67 \)[/tex] liters
To find [tex]\( V(x) \)[/tex]:
1. Integrate [tex]\( R(x) = 7x^5 + 5 \)[/tex]:
[tex]\[ V(x) = \int (7x^5 + 5) \, dx \][/tex]
2. Calculate the integral:
[tex]\[ \int 7x^5 \, dx = \frac{7}{6}x^6 \][/tex]
[tex]\[ \int 5 \, dx = 5x \][/tex]
3. Combine the results:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x + C \][/tex]
Since the pump starts when time [tex]\( x \)[/tex] starts (typically at [tex]\( x = 0 \)[/tex]), the constant of integration [tex]\( C \)[/tex] is zero in the context of this problem. Thus:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
Next, to determine the total volume of water pumped between 3 and 7 minutes, we need to compute [tex]\( V(7) - V(3) \)[/tex].
1. Evaluate [tex]\( V(7) \)[/tex]:
[tex]\[ V(7) = \frac{7}{6} (7^6) + 5(7) \][/tex]
2. Evaluate [tex]\( V(3) \)[/tex]:
[tex]\[ V(3) = \frac{7}{6} (3^6) + 5(3) \][/tex]
3. Calculate the difference [tex]\( V(7) - V(3) \)[/tex]:
[tex]\[ V(7) - V(3) = \left( \frac{7}{6} (7^6) + 5(7) \right) - \left( \frac{7}{6} (3^6) + 5(3) \right) \][/tex]
After evaluating these expressions and computing the values:
[tex]\[ V(7) = 136423.5 \][/tex]
[tex]\[ V(3) = -3.17 \][/tex]
Thus, the total volume of water pumped between 3 and 7 minutes is approximately:
[tex]\[ 136426.67 \ liters \][/tex]
So, the function [tex]\( V(x) \)[/tex] is:
[tex]\[ V(x) = \frac{7}{6} x^6 + 5x \][/tex]
And the total volume of water pumped between 3 and 7 minutes is:
[tex]\[ 136426.67 \ liters \][/tex]
Therefore:
- [tex]\( V(x) = \frac{7}{6} x^6 + 5x \)[/tex]
- The total volume of water pumped between 3 and 7 minutes is [tex]\( 136426.67 \)[/tex] liters
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.