At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the coordinates of the focus of the given parabola [tex]\( x^2 = 4y \)[/tex], let's first recall the standard form of a parabola that opens upwards or downwards.
The general form of a parabola that opens upwards or downwards is:
[tex]\[ x^2 = 4ay \][/tex]
In this equation, [tex]\(a\)[/tex] represents the distance from the vertex to the focus. The vertex of this parabola is at the origin [tex]\((0,0)\)[/tex].
Given the equation:
[tex]\[ x^2 = 4y \][/tex]
We compare this with the general form [tex]\( x^2 = 4ay \)[/tex]. By comparing, we can see that [tex]\( 4a = 4 \)[/tex].
Solving for [tex]\( a \)[/tex]:
[tex]\[ 4a = 4 \][/tex]
[tex]\[ a = 1 \][/tex]
Therefore, for the given parabola [tex]\( x^2 = 4y \)[/tex], the distance from the vertex to the focus is [tex]\( a = 1 \)[/tex]. Since the parabola opens upwards and the vertex is at the origin [tex]\((0, 0)\)[/tex], the focus will be located at [tex]\((0, a)\)[/tex] which is [tex]\((0, 1)\)[/tex].
Thus, the coordinates of the focus of the parabola are:
[tex]\((0, 1)\)[/tex]
Therefore, the correct option is:
[tex]\((0, 1)\)[/tex]
The general form of a parabola that opens upwards or downwards is:
[tex]\[ x^2 = 4ay \][/tex]
In this equation, [tex]\(a\)[/tex] represents the distance from the vertex to the focus. The vertex of this parabola is at the origin [tex]\((0,0)\)[/tex].
Given the equation:
[tex]\[ x^2 = 4y \][/tex]
We compare this with the general form [tex]\( x^2 = 4ay \)[/tex]. By comparing, we can see that [tex]\( 4a = 4 \)[/tex].
Solving for [tex]\( a \)[/tex]:
[tex]\[ 4a = 4 \][/tex]
[tex]\[ a = 1 \][/tex]
Therefore, for the given parabola [tex]\( x^2 = 4y \)[/tex], the distance from the vertex to the focus is [tex]\( a = 1 \)[/tex]. Since the parabola opens upwards and the vertex is at the origin [tex]\((0, 0)\)[/tex], the focus will be located at [tex]\((0, a)\)[/tex] which is [tex]\((0, 1)\)[/tex].
Thus, the coordinates of the focus of the parabola are:
[tex]\((0, 1)\)[/tex]
Therefore, the correct option is:
[tex]\((0, 1)\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.