At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let’s break down the process of finding [tex]$\vect{F}_{1}$[/tex], [tex]$\vect{F}_{2}$[/tex], and the net force [tex]$\vect{F}$[/tex] on [tex]$q_3$[/tex] step by step.
Given:
- The charge [tex]\( q_1 = 1.6 \times 10^{-7} \)[/tex] C
- The charge [tex]\( q_2 = -75.8 \times 10^{-4} \)[/tex] C
- The charge [tex]\( q_3 = 9.2 \times 10^{-6} \)[/tex] C
- The distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{13} \)[/tex] ) is 0.03 m
- The distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{23} \)[/tex] ) is 0.02 m
- Coulomb’s constant [tex]\( k = 8.99 \times 10^{9} \, \text{Nm}^{2}/\text{C}^{2} \)[/tex]
### Step-by-Step Solution:
1. Calculate the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_1 \)[/tex] ):
[tex]\[ F_1 = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given that [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] have the same sign (positive), the force will be repulsive. According to the conventions provided, a repulsive force will be directed to the right and thus be positive.
Using the correct numerical values, we get:
[tex]\[ F_1 \approx 14.703644444444445 \, \text{N} \][/tex]
2. Calculate the force exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_2 \)[/tex] ):
[tex]\[ F_2 = k \cdot \frac{|q_2 \cdot q_3|}{r_{23}^2} \][/tex]
Given that [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force will be attractive. According to the conventions provided, an attractive force will be directed to the left and thus be negative.
Using the correct numerical values, we get:
[tex]\[ F_2 \approx -1567316.5999999999 \, \text{N} \][/tex]
3. Calculate the net force on [tex]\( q_3 \)[/tex] ( [tex]\( F_{\text{net}} \)[/tex] ):
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
[tex]\[ F_{\text{net}} = 14.703644444444445 - 1567316.5999999999 \][/tex]
[tex]\[ F_{\text{net}} \approx -1567301.8963555554 \, \text{N} \][/tex]
### Final Answer:
[tex]\[ \vec{F}_1 = 14.703644444444445 \, \text{N} \][/tex]
[tex]\[ \vec{F}_2 = -1567316.5999999999 \, \text{N} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = -1567301.8963555554 \, \text{N} \][/tex]
The vectors [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex] are the forces exerted on [tex]\( q_3 \)[/tex] by [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] respectively, and [tex]\( \vec{F}_{\text{net}} \)[/tex] is the net force on [tex]\( q_3 \)[/tex], directed to the left due to the dominance of the attractive force from [tex]\( q_2 \)[/tex].
Given:
- The charge [tex]\( q_1 = 1.6 \times 10^{-7} \)[/tex] C
- The charge [tex]\( q_2 = -75.8 \times 10^{-4} \)[/tex] C
- The charge [tex]\( q_3 = 9.2 \times 10^{-6} \)[/tex] C
- The distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{13} \)[/tex] ) is 0.03 m
- The distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{23} \)[/tex] ) is 0.02 m
- Coulomb’s constant [tex]\( k = 8.99 \times 10^{9} \, \text{Nm}^{2}/\text{C}^{2} \)[/tex]
### Step-by-Step Solution:
1. Calculate the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_1 \)[/tex] ):
[tex]\[ F_1 = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given that [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] have the same sign (positive), the force will be repulsive. According to the conventions provided, a repulsive force will be directed to the right and thus be positive.
Using the correct numerical values, we get:
[tex]\[ F_1 \approx 14.703644444444445 \, \text{N} \][/tex]
2. Calculate the force exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_2 \)[/tex] ):
[tex]\[ F_2 = k \cdot \frac{|q_2 \cdot q_3|}{r_{23}^2} \][/tex]
Given that [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force will be attractive. According to the conventions provided, an attractive force will be directed to the left and thus be negative.
Using the correct numerical values, we get:
[tex]\[ F_2 \approx -1567316.5999999999 \, \text{N} \][/tex]
3. Calculate the net force on [tex]\( q_3 \)[/tex] ( [tex]\( F_{\text{net}} \)[/tex] ):
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
[tex]\[ F_{\text{net}} = 14.703644444444445 - 1567316.5999999999 \][/tex]
[tex]\[ F_{\text{net}} \approx -1567301.8963555554 \, \text{N} \][/tex]
### Final Answer:
[tex]\[ \vec{F}_1 = 14.703644444444445 \, \text{N} \][/tex]
[tex]\[ \vec{F}_2 = -1567316.5999999999 \, \text{N} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = -1567301.8963555554 \, \text{N} \][/tex]
The vectors [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex] are the forces exerted on [tex]\( q_3 \)[/tex] by [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] respectively, and [tex]\( \vec{F}_{\text{net}} \)[/tex] is the net force on [tex]\( q_3 \)[/tex], directed to the left due to the dominance of the attractive force from [tex]\( q_2 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.