Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let’s break down the process of finding [tex]$\vect{F}_{1}$[/tex], [tex]$\vect{F}_{2}$[/tex], and the net force [tex]$\vect{F}$[/tex] on [tex]$q_3$[/tex] step by step.
Given:
- The charge [tex]\( q_1 = 1.6 \times 10^{-7} \)[/tex] C
- The charge [tex]\( q_2 = -75.8 \times 10^{-4} \)[/tex] C
- The charge [tex]\( q_3 = 9.2 \times 10^{-6} \)[/tex] C
- The distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{13} \)[/tex] ) is 0.03 m
- The distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{23} \)[/tex] ) is 0.02 m
- Coulomb’s constant [tex]\( k = 8.99 \times 10^{9} \, \text{Nm}^{2}/\text{C}^{2} \)[/tex]
### Step-by-Step Solution:
1. Calculate the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_1 \)[/tex] ):
[tex]\[ F_1 = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given that [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] have the same sign (positive), the force will be repulsive. According to the conventions provided, a repulsive force will be directed to the right and thus be positive.
Using the correct numerical values, we get:
[tex]\[ F_1 \approx 14.703644444444445 \, \text{N} \][/tex]
2. Calculate the force exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_2 \)[/tex] ):
[tex]\[ F_2 = k \cdot \frac{|q_2 \cdot q_3|}{r_{23}^2} \][/tex]
Given that [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force will be attractive. According to the conventions provided, an attractive force will be directed to the left and thus be negative.
Using the correct numerical values, we get:
[tex]\[ F_2 \approx -1567316.5999999999 \, \text{N} \][/tex]
3. Calculate the net force on [tex]\( q_3 \)[/tex] ( [tex]\( F_{\text{net}} \)[/tex] ):
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
[tex]\[ F_{\text{net}} = 14.703644444444445 - 1567316.5999999999 \][/tex]
[tex]\[ F_{\text{net}} \approx -1567301.8963555554 \, \text{N} \][/tex]
### Final Answer:
[tex]\[ \vec{F}_1 = 14.703644444444445 \, \text{N} \][/tex]
[tex]\[ \vec{F}_2 = -1567316.5999999999 \, \text{N} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = -1567301.8963555554 \, \text{N} \][/tex]
The vectors [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex] are the forces exerted on [tex]\( q_3 \)[/tex] by [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] respectively, and [tex]\( \vec{F}_{\text{net}} \)[/tex] is the net force on [tex]\( q_3 \)[/tex], directed to the left due to the dominance of the attractive force from [tex]\( q_2 \)[/tex].
Given:
- The charge [tex]\( q_1 = 1.6 \times 10^{-7} \)[/tex] C
- The charge [tex]\( q_2 = -75.8 \times 10^{-4} \)[/tex] C
- The charge [tex]\( q_3 = 9.2 \times 10^{-6} \)[/tex] C
- The distance between [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{13} \)[/tex] ) is 0.03 m
- The distance between [tex]\( q_2 \)[/tex] and [tex]\( q_3 \)[/tex] ( [tex]\( r_{23} \)[/tex] ) is 0.02 m
- Coulomb’s constant [tex]\( k = 8.99 \times 10^{9} \, \text{Nm}^{2}/\text{C}^{2} \)[/tex]
### Step-by-Step Solution:
1. Calculate the force exerted by [tex]\( q_1 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_1 \)[/tex] ):
[tex]\[ F_1 = k \cdot \frac{|q_1 \cdot q_3|}{r_{13}^2} \][/tex]
Given that [tex]\( q_1 \)[/tex] and [tex]\( q_3 \)[/tex] have the same sign (positive), the force will be repulsive. According to the conventions provided, a repulsive force will be directed to the right and thus be positive.
Using the correct numerical values, we get:
[tex]\[ F_1 \approx 14.703644444444445 \, \text{N} \][/tex]
2. Calculate the force exerted by [tex]\( q_2 \)[/tex] on [tex]\( q_3 \)[/tex] ( [tex]\( F_2 \)[/tex] ):
[tex]\[ F_2 = k \cdot \frac{|q_2 \cdot q_3|}{r_{23}^2} \][/tex]
Given that [tex]\( q_2 \)[/tex] is negative and [tex]\( q_3 \)[/tex] is positive, the force will be attractive. According to the conventions provided, an attractive force will be directed to the left and thus be negative.
Using the correct numerical values, we get:
[tex]\[ F_2 \approx -1567316.5999999999 \, \text{N} \][/tex]
3. Calculate the net force on [tex]\( q_3 \)[/tex] ( [tex]\( F_{\text{net}} \)[/tex] ):
[tex]\[ F_{\text{net}} = F_1 + F_2 \][/tex]
[tex]\[ F_{\text{net}} = 14.703644444444445 - 1567316.5999999999 \][/tex]
[tex]\[ F_{\text{net}} \approx -1567301.8963555554 \, \text{N} \][/tex]
### Final Answer:
[tex]\[ \vec{F}_1 = 14.703644444444445 \, \text{N} \][/tex]
[tex]\[ \vec{F}_2 = -1567316.5999999999 \, \text{N} \][/tex]
[tex]\[ \vec{F}_{\text{net}} = -1567301.8963555554 \, \text{N} \][/tex]
The vectors [tex]\( \vec{F}_1 \)[/tex] and [tex]\( \vec{F}_2 \)[/tex] are the forces exerted on [tex]\( q_3 \)[/tex] by [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] respectively, and [tex]\( \vec{F}_{\text{net}} \)[/tex] is the net force on [tex]\( q_3 \)[/tex], directed to the left due to the dominance of the attractive force from [tex]\( q_2 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.