Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze each of the given equations to determine which one can be rewritten as [tex]\(x + 4 = x^2\)[/tex]:
1. [tex]\(\sqrt{x} + 2 = x\)[/tex]
- First, isolate the square root term: [tex]\(\sqrt{x} = x - 2\)[/tex].
- Square both sides to eliminate the square root: [tex]\(x = (x - 2)^2\)[/tex].
- Expand the right-hand side: [tex]\(x = x^2 - 4x + 4\)[/tex].
- Rearrange the equation: [tex]\(x^2 - 5x + 4 = 0\)[/tex].
- This does not match [tex]\(x^2 - x - 4 = 0\)[/tex], so the first equation does not satisfy the condition [tex]\(x + 4 = x^2\)[/tex].
2. [tex]\(\sqrt{x + 2} = x\)[/tex]
- Square both sides to eliminate the square root: [tex]\(x + 2 = x^2\)[/tex].
- Rearrange the equation: [tex]\(x^2 - x - 2 = 0\)[/tex].
- This does not match [tex]\(x^2 - x - 4 = 0\)[/tex], so the second equation does not satisfy the condition [tex]\(x + 4 = x^2\)[/tex].
3. [tex]\(\sqrt{x + 4} = x\)[/tex]
- Square both sides to eliminate the square root: [tex]\(x + 4 = x^2\)[/tex].
- Rearrange the equation: [tex]\(x^2 - x - 4 = 0\)[/tex].
- This matches the condition [tex]\(x + 4 = x^2\)[/tex], so the third equation satisfies the given condition.
4. [tex]\(\sqrt{x^2 + 16} = x\)[/tex]
- Square both sides to eliminate the square root: [tex]\(x^2 + 16 = x^2\)[/tex].
- Rearrange the equation: [tex]\(16 = 0\)[/tex].
- This is a contradiction and does not match [tex]\(x + 4 = x^2\)[/tex], so the fourth equation does not satisfy the condition.
Therefore, the equation that can be rewritten as [tex]\(x + 4 = x^2\)[/tex] is the third one:
[tex]\[ \boxed{3} \][/tex]
1. [tex]\(\sqrt{x} + 2 = x\)[/tex]
- First, isolate the square root term: [tex]\(\sqrt{x} = x - 2\)[/tex].
- Square both sides to eliminate the square root: [tex]\(x = (x - 2)^2\)[/tex].
- Expand the right-hand side: [tex]\(x = x^2 - 4x + 4\)[/tex].
- Rearrange the equation: [tex]\(x^2 - 5x + 4 = 0\)[/tex].
- This does not match [tex]\(x^2 - x - 4 = 0\)[/tex], so the first equation does not satisfy the condition [tex]\(x + 4 = x^2\)[/tex].
2. [tex]\(\sqrt{x + 2} = x\)[/tex]
- Square both sides to eliminate the square root: [tex]\(x + 2 = x^2\)[/tex].
- Rearrange the equation: [tex]\(x^2 - x - 2 = 0\)[/tex].
- This does not match [tex]\(x^2 - x - 4 = 0\)[/tex], so the second equation does not satisfy the condition [tex]\(x + 4 = x^2\)[/tex].
3. [tex]\(\sqrt{x + 4} = x\)[/tex]
- Square both sides to eliminate the square root: [tex]\(x + 4 = x^2\)[/tex].
- Rearrange the equation: [tex]\(x^2 - x - 4 = 0\)[/tex].
- This matches the condition [tex]\(x + 4 = x^2\)[/tex], so the third equation satisfies the given condition.
4. [tex]\(\sqrt{x^2 + 16} = x\)[/tex]
- Square both sides to eliminate the square root: [tex]\(x^2 + 16 = x^2\)[/tex].
- Rearrange the equation: [tex]\(16 = 0\)[/tex].
- This is a contradiction and does not match [tex]\(x + 4 = x^2\)[/tex], so the fourth equation does not satisfy the condition.
Therefore, the equation that can be rewritten as [tex]\(x + 4 = x^2\)[/tex] is the third one:
[tex]\[ \boxed{3} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.