Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

A sample of octane [tex]\(\left( C_8 H_{18} \right)\)[/tex] with a mass of [tex]\(0.750 \, g\)[/tex] is burned in a bomb calorimeter. As a result, the temperature of the calorimeter increases from [tex]\(21.0^{\circ} C\)[/tex] to [tex]\(41.0^{\circ} C\)[/tex]. The specific heat of the calorimeter is [tex]\(1.50 \, J /\left( g \cdot{ }^{\circ} C \right)\)[/tex], and its mass is [tex]\(1.00 \, kg\)[/tex]. How much heat is released during the combustion of this sample?

Use [tex]\( q = m C_p \Delta T \)[/tex].

A. [tex]\(22.5 \, kJ\)[/tex]

B. [tex]\(30.0 \, kJ\)[/tex]

C. [tex]\(31.5 \, kJ\)[/tex]

D. [tex]\(61.5 \, kJ\)[/tex]


Sagot :

To determine the amount of heat released during the combustion of the octane sample, we can use the given formula:

[tex]\[ q = m C_p \Delta T \][/tex]

Step-by-Step Solution:

1. Identify the variables and given information:
- Mass of the calorimeter ([tex]\(m\)[/tex]): [tex]\(1.00 \, \text{kg}\)[/tex]
- Specific heat of the calorimeter ([tex]\(C_p\)[/tex]): [tex]\(1.50 \, \text{J/(g·°C)}\)[/tex]
- Initial temperature ([tex]\(T_i\)[/tex]): [tex]\(21.0 \, \text{°C}\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]): [tex]\(41.0 \, \text{°C}\)[/tex]
- Temperature change ([tex]\(\Delta T\)[/tex]): [tex]\(T_f - T_i = 41.0 \, \text{°C} - 21.0 \, \text{°C} = 20.0 \, \text{°C}\)[/tex]

2. Convert the mass of the calorimeter from kilograms to grams:
[tex]\[ 1.00 \, \text{kg} \times 1000 \, \text{g/kg} = 1000 \, \text{g} \][/tex]

3. Calculate the heat ([tex]\(q\)[/tex]) released using the formula:
[tex]\[ q = m C_p \Delta T \][/tex]
Substituting the values we have:
[tex]\[ q = (1000 \, \text{g}) \times (1.50 \, \text{J/(g·°C)}) \times (20.0 \, \text{°C}) \][/tex]

4. Perform the multiplication to get the heat in joules:
[tex]\[ q = 1000 \, \text{g} \times 1.50 \, \text{J/(g·°C)} \times 20.0 \, \text{°C} \][/tex]
[tex]\[ q = 1000 \times 1.50 \times 20.0 \][/tex]
[tex]\[ q = 30000 \, \text{J} \][/tex]

5. Convert the heat from joules to kilojoules:
[tex]\[ q = \frac{30000 \, \text{J}}{1000 \, \text{J/kJ}} = 30.0 \, \text{kJ} \][/tex]

Thus, the amount of heat released during the combustion of the octane sample is [tex]\(30.0 \, \text{kJ}\)[/tex].

The correct answer is:
[tex]\[ \boxed{30.0 \, \text{kJ}} \][/tex]