At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's determine which pairs of points form lines that are perpendicular to a line with a slope of [tex]\(-\frac{4}{5}\)[/tex]. To do this, we first need to know how perpendicular slopes relate to each other. If two lines are perpendicular, the product of their slopes is [tex]\(-1\)[/tex].
Given the slope of the original line:
[tex]\[ m = -\frac{4}{5} \][/tex]
The slope of the line perpendicular to this slope, [tex]\( m_\perp \)[/tex], can be found using the relationship:
[tex]\[ m \cdot m_\perp = -1 \][/tex]
Substituting [tex]\( m = -\frac{4}{5} \)[/tex] into the equation:
[tex]\[ -\frac{4}{5} \cdot m_\perp = -1 \][/tex]
[tex]\[ m_\perp = \frac{5}{4} \][/tex]
Now, we will calculate the slopes of the lines passing through each pair of points and check if any of them has a slope of [tex]\(\frac{5}{4}\)[/tex].
### Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]
The slope between these two points, [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
### Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - 1} = \frac{-10}{3} = -\frac{10}{3} \][/tex]
### Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-5 + 1}{6 - 1} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{9 + 1}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
Comparing these slopes with [tex]\(\frac{5}{4}\)[/tex], we find:
- Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
Hence, the ordered pairs that could be points on a line perpendicular to the given line are:
[tex]\[ (-2, 0) \text{ and } (2, 5) \][/tex]
[tex]\[ (2, -1) \text{ and } (10, 9) \][/tex]
Given the slope of the original line:
[tex]\[ m = -\frac{4}{5} \][/tex]
The slope of the line perpendicular to this slope, [tex]\( m_\perp \)[/tex], can be found using the relationship:
[tex]\[ m \cdot m_\perp = -1 \][/tex]
Substituting [tex]\( m = -\frac{4}{5} \)[/tex] into the equation:
[tex]\[ -\frac{4}{5} \cdot m_\perp = -1 \][/tex]
[tex]\[ m_\perp = \frac{5}{4} \][/tex]
Now, we will calculate the slopes of the lines passing through each pair of points and check if any of them has a slope of [tex]\(\frac{5}{4}\)[/tex].
### Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]
The slope between these two points, [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
### Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - 1} = \frac{-10}{3} = -\frac{10}{3} \][/tex]
### Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-5 + 1}{6 - 1} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{9 + 1}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
Comparing these slopes with [tex]\(\frac{5}{4}\)[/tex], we find:
- Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
Hence, the ordered pairs that could be points on a line perpendicular to the given line are:
[tex]\[ (-2, 0) \text{ and } (2, 5) \][/tex]
[tex]\[ (2, -1) \text{ and } (10, 9) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.