Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's determine which pairs of points form lines that are perpendicular to a line with a slope of [tex]\(-\frac{4}{5}\)[/tex]. To do this, we first need to know how perpendicular slopes relate to each other. If two lines are perpendicular, the product of their slopes is [tex]\(-1\)[/tex].
Given the slope of the original line:
[tex]\[ m = -\frac{4}{5} \][/tex]
The slope of the line perpendicular to this slope, [tex]\( m_\perp \)[/tex], can be found using the relationship:
[tex]\[ m \cdot m_\perp = -1 \][/tex]
Substituting [tex]\( m = -\frac{4}{5} \)[/tex] into the equation:
[tex]\[ -\frac{4}{5} \cdot m_\perp = -1 \][/tex]
[tex]\[ m_\perp = \frac{5}{4} \][/tex]
Now, we will calculate the slopes of the lines passing through each pair of points and check if any of them has a slope of [tex]\(\frac{5}{4}\)[/tex].
### Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]
The slope between these two points, [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
### Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - 1} = \frac{-10}{3} = -\frac{10}{3} \][/tex]
### Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-5 + 1}{6 - 1} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{9 + 1}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
Comparing these slopes with [tex]\(\frac{5}{4}\)[/tex], we find:
- Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
Hence, the ordered pairs that could be points on a line perpendicular to the given line are:
[tex]\[ (-2, 0) \text{ and } (2, 5) \][/tex]
[tex]\[ (2, -1) \text{ and } (10, 9) \][/tex]
Given the slope of the original line:
[tex]\[ m = -\frac{4}{5} \][/tex]
The slope of the line perpendicular to this slope, [tex]\( m_\perp \)[/tex], can be found using the relationship:
[tex]\[ m \cdot m_\perp = -1 \][/tex]
Substituting [tex]\( m = -\frac{4}{5} \)[/tex] into the equation:
[tex]\[ -\frac{4}{5} \cdot m_\perp = -1 \][/tex]
[tex]\[ m_\perp = \frac{5}{4} \][/tex]
Now, we will calculate the slopes of the lines passing through each pair of points and check if any of them has a slope of [tex]\(\frac{5}{4}\)[/tex].
### Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex]
The slope between these two points, [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
### Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - 5}{4 - 1} = \frac{-10}{3} = -\frac{10}{3} \][/tex]
### Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex]
[tex]\[ \text{slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex]
[tex]\[ \text{slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-5 + 1}{6 - 1} = \frac{-4}{5} = -\frac{4}{5} \][/tex]
### Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex]
[tex]\[ \text{slope} = \frac{9 - (-1)}{10 - 2} = \frac{9 + 1}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
Comparing these slopes with [tex]\(\frac{5}{4}\)[/tex], we find:
- Pair 1: [tex]\((-2,0)\)[/tex] and [tex]\((2,5)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 2: [tex]\((1,5)\)[/tex] and [tex]\((4,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 3: [tex]\((-3,4)\)[/tex] and [tex]\((2,0)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 4: [tex]\((1,-1)\)[/tex] and [tex]\((6,-5)\)[/tex] does not have a slope of [tex]\(\frac{5}{4}\)[/tex]
- Pair 5: [tex]\((2,-1)\)[/tex] and [tex]\((10,9)\)[/tex] has a slope of [tex]\(\frac{5}{4}\)[/tex]
Hence, the ordered pairs that could be points on a line perpendicular to the given line are:
[tex]\[ (-2, 0) \text{ and } (2, 5) \][/tex]
[tex]\[ (2, -1) \text{ and } (10, 9) \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.