Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the equation of a line that is parallel to a given line and passes through a specific point, we follow these steps:
1. Identify the slope of the given line:
- The equation of the given line is [tex]\( y - 1 = -\frac{3}{2}(x + 3) \)[/tex].
- This equation is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope.
- From the equation, we can see that the slope [tex]\( m \)[/tex] is [tex]\( -\frac{3}{2} \)[/tex].
2. Use the same slope for the parallel line:
- Parallel lines have the same slope. Therefore, the slope of our line will also be [tex]\( -\frac{3}{2} \)[/tex].
3. Use the point-slope form to write the equation:
- We are given a point [tex]\( (-3, 1) \)[/tex] through which our line passes.
- The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substituting [tex]\( m = -\frac{3}{2} \)[/tex], [tex]\( x_1 = -3 \)[/tex], and [tex]\( y_1 = 1 \)[/tex] into the formula, we get:
[tex]\[ y - 1 = -\frac{3}{2}(x - (-3)) \][/tex]
4. Simplify the equation:
- Simplifying the equation, we have:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
Therefore, the equation of the line in point-slope form that is parallel to the given line and passes through the point [tex]\((-3, 1)\)[/tex] is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
So, the correct answer is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
1. Identify the slope of the given line:
- The equation of the given line is [tex]\( y - 1 = -\frac{3}{2}(x + 3) \)[/tex].
- This equation is in point-slope form [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope.
- From the equation, we can see that the slope [tex]\( m \)[/tex] is [tex]\( -\frac{3}{2} \)[/tex].
2. Use the same slope for the parallel line:
- Parallel lines have the same slope. Therefore, the slope of our line will also be [tex]\( -\frac{3}{2} \)[/tex].
3. Use the point-slope form to write the equation:
- We are given a point [tex]\( (-3, 1) \)[/tex] through which our line passes.
- The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substituting [tex]\( m = -\frac{3}{2} \)[/tex], [tex]\( x_1 = -3 \)[/tex], and [tex]\( y_1 = 1 \)[/tex] into the formula, we get:
[tex]\[ y - 1 = -\frac{3}{2}(x - (-3)) \][/tex]
4. Simplify the equation:
- Simplifying the equation, we have:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
Therefore, the equation of the line in point-slope form that is parallel to the given line and passes through the point [tex]\((-3, 1)\)[/tex] is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
So, the correct answer is:
[tex]\[ y - 1 = -\frac{3}{2}(x + 3) \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.