Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A sample of an unknown substance has a mass of [tex]$0.465 \, \text{kg}$[/tex]. If [tex]$3,000.0 \, \text{J}$[/tex] of heat is required to heat the substance from [tex][tex]$0.0^{\circ} \text{C}$[/tex][/tex] to [tex]$100.0^{\circ} \text{C}$[/tex], what is the specific heat of the substance?

Use [tex]q = m C_p \Delta T[/tex].

A. [tex]0.00775 \, \frac{\text{J}}{ \text{g} \cdot ^{\circ} \text{C}}[/tex]
B. [tex]0.0600 \, \frac{\text{J}}{ \text{g} \cdot ^{\circ} \text{C}}[/tex]
C. [tex]0.129 \, \frac{\text{J}}{ \text{g} \cdot ^{\circ} \text{C}}[/tex]
D. [tex]0.155 \, \frac{\text{J}}{ \text{g} \cdot ^{\circ} \text{C}}[/tex]

Sagot :

Sure! Let's break down the solution step-by-step to find the specific heat ([tex]\(C_p\)[/tex]) of the substance.

### Given Data:
1. Mass ([tex]\(m\)[/tex]) of the substance: [tex]\(0.465 \, \text{kg}\)[/tex]
2. Heat energy ([tex]\(q\)[/tex]) added: [tex]\(3,000.0 \, \text{J}\)[/tex]
3. Initial temperature ([tex]\(T_i\)[/tex]): [tex]\(0.0^\circ \text{C}\)[/tex]
4. Final temperature ([tex]\(T_f\)[/tex]): [tex]\(100.0^\circ \text{C}\)[/tex]

### Step-by-Step Solution:

1. Calculate the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_f - T_i = 100.0^\circ \text{C} - 0.0^\circ \text{C} = 100.0^\circ \text{C} \][/tex]

2. Use the formula [tex]\(q = m C_p \Delta T\)[/tex] to solve for [tex]\(C_p\)[/tex]:
[tex]\[ q = m C_p \Delta T \][/tex]
Rearranging to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
Plugging in the given values:
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{0.465 \, \text{kg} \times 100.0^\circ \text{C}} \][/tex]
[tex]\[ C_p = \frac{3,000.0 \, \text{J}}{46.5 \, \text{kg}^\circ \text{C}} \][/tex]
[tex]\[ C_p = 64.51612903225806 \, \text{J/(kg}^\circ \text{C)} \][/tex]

3. Convert the specific heat from [tex]\(\text{J/(kg}^\circ \text{C)}\)[/tex] to [tex]\(\text{J/(g}^\circ \text{C)}\)[/tex]:
Since there are [tex]\(1,000 \, \text{g}\)[/tex] in [tex]\(1 \, \text{kg}\)[/tex], divide the specific heat by [tex]\(1,000\)[/tex]:
[tex]\[ C_p = \frac{64.51612903225806 \, \text{J/(kg}^\circ \text{C)}}{1,000} \][/tex]
[tex]\[ C_p = 0.06451612903225806 \, \text{J/(g}^\circ \text{C)} \][/tex]

### Conclusion:
None of the provided choices correctly match the specific heat calculated, which is approximately [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex]. Thus, the specific heat of the substance is [tex]\(0.0645 \, \text{J/(g}^\circ \text{C)}\)[/tex].