Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem using the Fundamental Theorem of Line Integrals, we need to proceed through the following steps:
1. Verify if the vector field [tex]\(\vec{F}\)[/tex] is conservative.
2. Find the potential function [tex]\(f(x, y, z)\)[/tex] if the vector field is conservative.
3. Evaluate the potential function at the endpoints [tex]\((1, 0, 2)\)[/tex] and [tex]\((1, 1, 1)\)[/tex].
4. Calculate the line integral using the fundamental theorem for the conservative vector field.
---
### Step 1: Verify if the Vector Field is Conservative
A vector field [tex]\(\vec{F}(x, y, z) = \langle P, Q, R \rangle\)[/tex] is conservative if there exists a potential function [tex]\(f(x, y, z)\)[/tex] such that:
[tex]\[ \vec{F} = \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \][/tex]
One way to check if [tex]\(\vec{F}\)[/tex] is conservative is to verify that the curl of [tex]\(\vec{F}\)[/tex] is zero:
[tex]\[ \nabla \times \vec{F} = \vec{0} \][/tex]
Given:
[tex]\[ \vec{F}(x, y, z) = \langle 4x - 2y + 2z, -2x + 2yz + z^2, 2x + 2yz + y^2 \rangle \][/tex]
We compute the curl [tex]\(\nabla \times \vec{F}\)[/tex]:
[tex]\[ \nabla \times \vec{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \][/tex]
Calculate each component:
1. [tex]\(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\)[/tex]:
[tex]\[ \frac{\partial}{\partial y} (2x + 2yz + y^2) = 2z + 2y \][/tex]
[tex]\[ \frac{\partial}{\partial z} (-2x + 2yz + z^2) = 2y + 2z \][/tex]
[tex]\[ \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = (2z + 2y) - (2y + 2z) = 0 \][/tex]
2. [tex]\(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\)[/tex]:
[tex]\[ \frac{\partial}{\partial z} (4x - 2y + 2z) = 2 \][/tex]
[tex]\[ \frac{\partial}{\partial x} (2x + 2yz + y^2) = 2 \][/tex]
[tex]\[ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = 2 - 2 = 0 \][/tex]
3. [tex]\(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\)[/tex]:
[tex]\[ \frac{\partial}{\partial x} (-2x + 2yz + z^2) = -2 \][/tex]
[tex]\[ \frac{\partial}{\partial y} (4x - 2y + 2z) = -2 \][/tex]
[tex]\[ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -2 - (-2) = 0 \][/tex]
Since all components of the curl are zero, [tex]\(\nabla \times \vec{F} = \langle 0, 0, 0 \rangle\)[/tex]. Thus, [tex]\(\vec{F}\)[/tex] is conservative.
---
### Step 2: Find the Potential Function [tex]\(f(x, y, z)\)[/tex]
Since [tex]\(\vec{F}\)[/tex] is conservative, there exists a potential function [tex]\(f(x, y, z)\)[/tex] such that:
[tex]\[ \vec{F} = \nabla f \][/tex]
We need to find [tex]\(f\)[/tex] such that:
[tex]\[ \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \left( 4x - 2y + 2z, -2x + 2yz + z^2, 2x + 2yz + y^2 \right) \][/tex]
Integrate the first component with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = 4x - 2y + 2z \implies f(x, y, z) = 2x^2 - 2xy + 2xz + g(y, z) \][/tex]
Here, [tex]\(g(y, z)\)[/tex] is a function of [tex]\(y\)[/tex] and [tex]\(z\)[/tex] because the derivative with respect to [tex]\(x\)[/tex] should not change [tex]\(g(y, z)\)[/tex].
Integrate the second component with respect to [tex]\(y\)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = -2x + 2yz + z^2 \implies f(x, y, z) = -2xy + y^2z + z^2y + h(x, z) \][/tex]
Combining and resolving the terms, we assume consistent forms:
[tex]\[ f(x, y, z) = 2x^2 - 2xy + 2xz + y^2z + z^2y \][/tex]
Thus, potential function [tex]\( f \)[/tex] is:
[tex]\[ f(x, y, z) = 2x^2 - 2xy + 2xz + y^2z + z^2y \][/tex]
---
### Step 3: Evaluate the Potential Function at the Endpoints
Evaluate [tex]\( f \)[/tex] at [tex]\((1, 0, 2)\)[/tex]:
[tex]\[ f(1, 0, 2) = 2(1)^2 - 2(1)(0) + 2(1)(2) + (0)^2(2) + (2)^2(0) = 2 + 4= 6 \][/tex]
Evaluate [tex]\( f \)[/tex] at [tex]\((1, 1, 1)\)[/tex]:
[tex]\[ f(1, 1, 1) = 2(1)^2 - 2(1)(1) + 2(1)(1) + (1)^2(1) + (1)^2(1) = 2-2+2 +1+1 = 4 \][/tex]
---
### Step 4: Calculate the Line Integral
Using the Fundamental Theorem of Line Integrals:
[tex]\[ \int_C \vec{F} \cdot d\vec{r} = f(1, 1, 1) - f(1, 0, 2) \][/tex]
Thus,
[tex]\[ \int_C \vec{F} \cdot d\vec{r} = 4 - 6 = -2 \][/tex]
Final Answer:
[tex]\[ \boxed{-2} \][/tex]
1. Verify if the vector field [tex]\(\vec{F}\)[/tex] is conservative.
2. Find the potential function [tex]\(f(x, y, z)\)[/tex] if the vector field is conservative.
3. Evaluate the potential function at the endpoints [tex]\((1, 0, 2)\)[/tex] and [tex]\((1, 1, 1)\)[/tex].
4. Calculate the line integral using the fundamental theorem for the conservative vector field.
---
### Step 1: Verify if the Vector Field is Conservative
A vector field [tex]\(\vec{F}(x, y, z) = \langle P, Q, R \rangle\)[/tex] is conservative if there exists a potential function [tex]\(f(x, y, z)\)[/tex] such that:
[tex]\[ \vec{F} = \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \][/tex]
One way to check if [tex]\(\vec{F}\)[/tex] is conservative is to verify that the curl of [tex]\(\vec{F}\)[/tex] is zero:
[tex]\[ \nabla \times \vec{F} = \vec{0} \][/tex]
Given:
[tex]\[ \vec{F}(x, y, z) = \langle 4x - 2y + 2z, -2x + 2yz + z^2, 2x + 2yz + y^2 \rangle \][/tex]
We compute the curl [tex]\(\nabla \times \vec{F}\)[/tex]:
[tex]\[ \nabla \times \vec{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \][/tex]
Calculate each component:
1. [tex]\(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\)[/tex]:
[tex]\[ \frac{\partial}{\partial y} (2x + 2yz + y^2) = 2z + 2y \][/tex]
[tex]\[ \frac{\partial}{\partial z} (-2x + 2yz + z^2) = 2y + 2z \][/tex]
[tex]\[ \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = (2z + 2y) - (2y + 2z) = 0 \][/tex]
2. [tex]\(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\)[/tex]:
[tex]\[ \frac{\partial}{\partial z} (4x - 2y + 2z) = 2 \][/tex]
[tex]\[ \frac{\partial}{\partial x} (2x + 2yz + y^2) = 2 \][/tex]
[tex]\[ \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = 2 - 2 = 0 \][/tex]
3. [tex]\(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\)[/tex]:
[tex]\[ \frac{\partial}{\partial x} (-2x + 2yz + z^2) = -2 \][/tex]
[tex]\[ \frac{\partial}{\partial y} (4x - 2y + 2z) = -2 \][/tex]
[tex]\[ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -2 - (-2) = 0 \][/tex]
Since all components of the curl are zero, [tex]\(\nabla \times \vec{F} = \langle 0, 0, 0 \rangle\)[/tex]. Thus, [tex]\(\vec{F}\)[/tex] is conservative.
---
### Step 2: Find the Potential Function [tex]\(f(x, y, z)\)[/tex]
Since [tex]\(\vec{F}\)[/tex] is conservative, there exists a potential function [tex]\(f(x, y, z)\)[/tex] such that:
[tex]\[ \vec{F} = \nabla f \][/tex]
We need to find [tex]\(f\)[/tex] such that:
[tex]\[ \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \left( 4x - 2y + 2z, -2x + 2yz + z^2, 2x + 2yz + y^2 \right) \][/tex]
Integrate the first component with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{\partial f}{\partial x} = 4x - 2y + 2z \implies f(x, y, z) = 2x^2 - 2xy + 2xz + g(y, z) \][/tex]
Here, [tex]\(g(y, z)\)[/tex] is a function of [tex]\(y\)[/tex] and [tex]\(z\)[/tex] because the derivative with respect to [tex]\(x\)[/tex] should not change [tex]\(g(y, z)\)[/tex].
Integrate the second component with respect to [tex]\(y\)[/tex]:
[tex]\[ \frac{\partial f}{\partial y} = -2x + 2yz + z^2 \implies f(x, y, z) = -2xy + y^2z + z^2y + h(x, z) \][/tex]
Combining and resolving the terms, we assume consistent forms:
[tex]\[ f(x, y, z) = 2x^2 - 2xy + 2xz + y^2z + z^2y \][/tex]
Thus, potential function [tex]\( f \)[/tex] is:
[tex]\[ f(x, y, z) = 2x^2 - 2xy + 2xz + y^2z + z^2y \][/tex]
---
### Step 3: Evaluate the Potential Function at the Endpoints
Evaluate [tex]\( f \)[/tex] at [tex]\((1, 0, 2)\)[/tex]:
[tex]\[ f(1, 0, 2) = 2(1)^2 - 2(1)(0) + 2(1)(2) + (0)^2(2) + (2)^2(0) = 2 + 4= 6 \][/tex]
Evaluate [tex]\( f \)[/tex] at [tex]\((1, 1, 1)\)[/tex]:
[tex]\[ f(1, 1, 1) = 2(1)^2 - 2(1)(1) + 2(1)(1) + (1)^2(1) + (1)^2(1) = 2-2+2 +1+1 = 4 \][/tex]
---
### Step 4: Calculate the Line Integral
Using the Fundamental Theorem of Line Integrals:
[tex]\[ \int_C \vec{F} \cdot d\vec{r} = f(1, 1, 1) - f(1, 0, 2) \][/tex]
Thus,
[tex]\[ \int_C \vec{F} \cdot d\vec{r} = 4 - 6 = -2 \][/tex]
Final Answer:
[tex]\[ \boxed{-2} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.