Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the probability that at least one of two events, [tex]\( E_1 \)[/tex] and [tex]\( E_2 \)[/tex], occurs, we use the principle of inclusion and exclusion in probability theory.
The probability that at least one of [tex]\( E_1 \)[/tex] or [tex]\( E_2 \)[/tex] occurs is represented by [tex]\( P(E_1 \cup E_2) \)[/tex].
According to the principle of inclusion and exclusion:
[tex]\[ P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \][/tex]
Here’s how this formula is derived:
1. [tex]\( P(E_1) \)[/tex] is the probability that event [tex]\( E_1 \)[/tex] occurs.
2. [tex]\( P(E_2) \)[/tex] is the probability that event [tex]\( E_2 \)[/tex] occurs.
3. Adding [tex]\( P(E_1) + P(E_2) \)[/tex] initially considers all outcomes of [tex]\( E_1 \)[/tex] and [tex]\( E_2 \)[/tex], but it counts the overlap (where both [tex]\( E_1 \)[/tex] and [tex]\( E_2 \)[/tex] occur) twice.
4. To correct for this double-counting, we subtract [tex]\( P(E_1 \cap E_2) \)[/tex], the probability that both events occur.
Thus, the correct probability that at least one of the two events, [tex]\( E_1 \)[/tex] or [tex]\( E_2 \)[/tex], occurs is:
[tex]\[ P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \][/tex]
So, the correct answer is:
C. [tex]\( P(E_1) + P(E_2) - P(E_1 \cap E_2) \)[/tex]
The probability that at least one of [tex]\( E_1 \)[/tex] or [tex]\( E_2 \)[/tex] occurs is represented by [tex]\( P(E_1 \cup E_2) \)[/tex].
According to the principle of inclusion and exclusion:
[tex]\[ P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \][/tex]
Here’s how this formula is derived:
1. [tex]\( P(E_1) \)[/tex] is the probability that event [tex]\( E_1 \)[/tex] occurs.
2. [tex]\( P(E_2) \)[/tex] is the probability that event [tex]\( E_2 \)[/tex] occurs.
3. Adding [tex]\( P(E_1) + P(E_2) \)[/tex] initially considers all outcomes of [tex]\( E_1 \)[/tex] and [tex]\( E_2 \)[/tex], but it counts the overlap (where both [tex]\( E_1 \)[/tex] and [tex]\( E_2 \)[/tex] occur) twice.
4. To correct for this double-counting, we subtract [tex]\( P(E_1 \cap E_2) \)[/tex], the probability that both events occur.
Thus, the correct probability that at least one of the two events, [tex]\( E_1 \)[/tex] or [tex]\( E_2 \)[/tex], occurs is:
[tex]\[ P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) \][/tex]
So, the correct answer is:
C. [tex]\( P(E_1) + P(E_2) - P(E_1 \cap E_2) \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.