Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the mean waiting time from the given frequency distribution, we need to follow a systematic approach. Let's break down the steps:
1. Identify Interval Midpoints:
For each interval, we need to calculate the midpoint, which represents the average waiting time for that interval. The midpoint is calculated as the average of the lower and upper boundaries of each interval.
- [tex]\(0-3\)[/tex]: midpoint is [tex]\((0 + 3)/2 = 1.5\)[/tex]
- [tex]\(4-7\)[/tex]: midpoint is [tex]\((4 + 7)/2 = 5.5\)[/tex]
- [tex]\(8-11\)[/tex]: midpoint is [tex]\((8 + 11)/2 = 9.5\)[/tex]
- [tex]\(12-15\)[/tex]: midpoint is [tex]\((12 + 15)/2 = 13.5\)[/tex]
- [tex]\(16-19\)[/tex]: midpoint is [tex]\((16 + 19)/2 = 17.5\)[/tex]
- [tex]\(20-23\)[/tex]: midpoint is [tex]\((20 + 23)/2 = 21.5\)[/tex]
- [tex]\(24-27\)[/tex]: midpoint is [tex]\((24 + 27)/2 = 25.5\)[/tex]
2. Multiply Each Midpoint by Its Corresponding Frequency:
This step helps us find the weighted sum of all midpoints based on their frequencies.
[tex]\[ \begin{align*} 1.5 \times 14 & = 21 \\ 5.5 \times 13 & = 71.5 \\ 9.5 \times 14 & = 133 \\ 13.5 \times 8 & = 108 \\ 17.5 \times 6 & = 105 \\ 21.5 \times 3 & = 64.5 \\ 25.5 \times 3 & = 76.5 \\ \end{align*} \][/tex]
3. Find the Total Sum of Midpoint-Frequency Products:
Adding all the products from step 2:
[tex]\[ 21 + 71.5 + 133 + 108 + 105 + 64.5 + 76.5 = 579.5 \][/tex]
4. Calculate the Total Number of Customers:
Sum of all frequencies:
[tex]\[ 14 + 13 + 14 + 8 + 6 + 3 + 3 = 61 \][/tex]
5. Calculate the Mean Waiting Time:
The mean waiting time is obtained by dividing the total sum of the midpoint-frequency products by the total number of customers.
[tex]\[ \text{Mean Waiting Time} = \frac{579.5}{61} = 9.5 \text{ minutes} \][/tex]
Therefore, the mean waiting time is [tex]\(9.5\)[/tex] minutes.
1. Identify Interval Midpoints:
For each interval, we need to calculate the midpoint, which represents the average waiting time for that interval. The midpoint is calculated as the average of the lower and upper boundaries of each interval.
- [tex]\(0-3\)[/tex]: midpoint is [tex]\((0 + 3)/2 = 1.5\)[/tex]
- [tex]\(4-7\)[/tex]: midpoint is [tex]\((4 + 7)/2 = 5.5\)[/tex]
- [tex]\(8-11\)[/tex]: midpoint is [tex]\((8 + 11)/2 = 9.5\)[/tex]
- [tex]\(12-15\)[/tex]: midpoint is [tex]\((12 + 15)/2 = 13.5\)[/tex]
- [tex]\(16-19\)[/tex]: midpoint is [tex]\((16 + 19)/2 = 17.5\)[/tex]
- [tex]\(20-23\)[/tex]: midpoint is [tex]\((20 + 23)/2 = 21.5\)[/tex]
- [tex]\(24-27\)[/tex]: midpoint is [tex]\((24 + 27)/2 = 25.5\)[/tex]
2. Multiply Each Midpoint by Its Corresponding Frequency:
This step helps us find the weighted sum of all midpoints based on their frequencies.
[tex]\[ \begin{align*} 1.5 \times 14 & = 21 \\ 5.5 \times 13 & = 71.5 \\ 9.5 \times 14 & = 133 \\ 13.5 \times 8 & = 108 \\ 17.5 \times 6 & = 105 \\ 21.5 \times 3 & = 64.5 \\ 25.5 \times 3 & = 76.5 \\ \end{align*} \][/tex]
3. Find the Total Sum of Midpoint-Frequency Products:
Adding all the products from step 2:
[tex]\[ 21 + 71.5 + 133 + 108 + 105 + 64.5 + 76.5 = 579.5 \][/tex]
4. Calculate the Total Number of Customers:
Sum of all frequencies:
[tex]\[ 14 + 13 + 14 + 8 + 6 + 3 + 3 = 61 \][/tex]
5. Calculate the Mean Waiting Time:
The mean waiting time is obtained by dividing the total sum of the midpoint-frequency products by the total number of customers.
[tex]\[ \text{Mean Waiting Time} = \frac{579.5}{61} = 9.5 \text{ minutes} \][/tex]
Therefore, the mean waiting time is [tex]\(9.5\)[/tex] minutes.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.