Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the mean waiting time from the given frequency distribution, we need to follow a systematic approach. Let's break down the steps:
1. Identify Interval Midpoints:
For each interval, we need to calculate the midpoint, which represents the average waiting time for that interval. The midpoint is calculated as the average of the lower and upper boundaries of each interval.
- [tex]\(0-3\)[/tex]: midpoint is [tex]\((0 + 3)/2 = 1.5\)[/tex]
- [tex]\(4-7\)[/tex]: midpoint is [tex]\((4 + 7)/2 = 5.5\)[/tex]
- [tex]\(8-11\)[/tex]: midpoint is [tex]\((8 + 11)/2 = 9.5\)[/tex]
- [tex]\(12-15\)[/tex]: midpoint is [tex]\((12 + 15)/2 = 13.5\)[/tex]
- [tex]\(16-19\)[/tex]: midpoint is [tex]\((16 + 19)/2 = 17.5\)[/tex]
- [tex]\(20-23\)[/tex]: midpoint is [tex]\((20 + 23)/2 = 21.5\)[/tex]
- [tex]\(24-27\)[/tex]: midpoint is [tex]\((24 + 27)/2 = 25.5\)[/tex]
2. Multiply Each Midpoint by Its Corresponding Frequency:
This step helps us find the weighted sum of all midpoints based on their frequencies.
[tex]\[ \begin{align*} 1.5 \times 14 & = 21 \\ 5.5 \times 13 & = 71.5 \\ 9.5 \times 14 & = 133 \\ 13.5 \times 8 & = 108 \\ 17.5 \times 6 & = 105 \\ 21.5 \times 3 & = 64.5 \\ 25.5 \times 3 & = 76.5 \\ \end{align*} \][/tex]
3. Find the Total Sum of Midpoint-Frequency Products:
Adding all the products from step 2:
[tex]\[ 21 + 71.5 + 133 + 108 + 105 + 64.5 + 76.5 = 579.5 \][/tex]
4. Calculate the Total Number of Customers:
Sum of all frequencies:
[tex]\[ 14 + 13 + 14 + 8 + 6 + 3 + 3 = 61 \][/tex]
5. Calculate the Mean Waiting Time:
The mean waiting time is obtained by dividing the total sum of the midpoint-frequency products by the total number of customers.
[tex]\[ \text{Mean Waiting Time} = \frac{579.5}{61} = 9.5 \text{ minutes} \][/tex]
Therefore, the mean waiting time is [tex]\(9.5\)[/tex] minutes.
1. Identify Interval Midpoints:
For each interval, we need to calculate the midpoint, which represents the average waiting time for that interval. The midpoint is calculated as the average of the lower and upper boundaries of each interval.
- [tex]\(0-3\)[/tex]: midpoint is [tex]\((0 + 3)/2 = 1.5\)[/tex]
- [tex]\(4-7\)[/tex]: midpoint is [tex]\((4 + 7)/2 = 5.5\)[/tex]
- [tex]\(8-11\)[/tex]: midpoint is [tex]\((8 + 11)/2 = 9.5\)[/tex]
- [tex]\(12-15\)[/tex]: midpoint is [tex]\((12 + 15)/2 = 13.5\)[/tex]
- [tex]\(16-19\)[/tex]: midpoint is [tex]\((16 + 19)/2 = 17.5\)[/tex]
- [tex]\(20-23\)[/tex]: midpoint is [tex]\((20 + 23)/2 = 21.5\)[/tex]
- [tex]\(24-27\)[/tex]: midpoint is [tex]\((24 + 27)/2 = 25.5\)[/tex]
2. Multiply Each Midpoint by Its Corresponding Frequency:
This step helps us find the weighted sum of all midpoints based on their frequencies.
[tex]\[ \begin{align*} 1.5 \times 14 & = 21 \\ 5.5 \times 13 & = 71.5 \\ 9.5 \times 14 & = 133 \\ 13.5 \times 8 & = 108 \\ 17.5 \times 6 & = 105 \\ 21.5 \times 3 & = 64.5 \\ 25.5 \times 3 & = 76.5 \\ \end{align*} \][/tex]
3. Find the Total Sum of Midpoint-Frequency Products:
Adding all the products from step 2:
[tex]\[ 21 + 71.5 + 133 + 108 + 105 + 64.5 + 76.5 = 579.5 \][/tex]
4. Calculate the Total Number of Customers:
Sum of all frequencies:
[tex]\[ 14 + 13 + 14 + 8 + 6 + 3 + 3 = 61 \][/tex]
5. Calculate the Mean Waiting Time:
The mean waiting time is obtained by dividing the total sum of the midpoint-frequency products by the total number of customers.
[tex]\[ \text{Mean Waiting Time} = \frac{579.5}{61} = 9.5 \text{ minutes} \][/tex]
Therefore, the mean waiting time is [tex]\(9.5\)[/tex] minutes.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.