Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let’s go through the solution step-by-step.
We are given that the electric resistance [tex]\( R \)[/tex] of a wire varies directly with its length [tex]\( L \)[/tex] and inversely with the square of its diameter [tex]\( D \)[/tex]. This relationship can be represented mathematically as:
[tex]\[ R = k \frac{L}{D^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
Step 1: Determine the constant of proportionality (k)
We are given the initial conditions:
- Length of the first wire [tex]\( L_1 = 80 \, \text{ft} \)[/tex]
- Diameter of the first wire [tex]\( D_1 = \frac{1}{8} \, \text{in} \)[/tex]
- Resistance of the first wire [tex]\( R_1 = \frac{1}{2} \, \text{ohm} \)[/tex]
Using the relationship:
[tex]\[ R_1 = k \frac{L_1}{D_1^2} \][/tex]
Substitute the given values into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\left(\frac{1}{8}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{8}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{8}\right)^2 = \frac{1}{64} \][/tex]
Now substitute this back into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\frac{1}{64}} \][/tex]
Simplify the fraction:
[tex]\[ k = \frac{1}{2} \cdot \frac{1}{80} \cdot 64 \][/tex]
[tex]\[ k = 0.5 \cdot 64 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} = 32 \cdot 0.0125 = 0.4 \][/tex]
Step 2: Determine the resistance of the second wire
We are given the second set of conditions:
- Length of the second wire [tex]\( L_2 = 120 \, \text{ft} \)[/tex]
- Diameter of the second wire [tex]\( D_2 = \frac{1}{4} \, \text{in} \)[/tex]
We need to find the resistance [tex]\( R_2 \)[/tex] for the second wire using the same relationship:
[tex]\[ R_2 = k \frac{L_2}{D_2^2} \][/tex]
Using the calculated [tex]\( k = 0.4 \)[/tex]:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\left(\frac{1}{4}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{4} \right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1}{16} \][/tex]
Substitute this back into the equation:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\frac{1}{16}} \][/tex]
Simplify the fraction:
[tex]\[ R_2 = 0.00009765625 \cdot 120 \cdot 16 \][/tex]
[tex]\[ R_2 = 0.00009765625 \cdot 1920 \][/tex]
[tex]\[ R_2 = 0.1875 \][/tex]
So, the resistance in a piece of the same type of wire that is [tex]\(120 \, \text{ft}\)[/tex] long and has a diameter of [tex]\(\frac{1}{4} \, \text{in}\)[/tex] is [tex]\(0.1875 \, \text{ohms}\)[/tex].
We are given that the electric resistance [tex]\( R \)[/tex] of a wire varies directly with its length [tex]\( L \)[/tex] and inversely with the square of its diameter [tex]\( D \)[/tex]. This relationship can be represented mathematically as:
[tex]\[ R = k \frac{L}{D^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
Step 1: Determine the constant of proportionality (k)
We are given the initial conditions:
- Length of the first wire [tex]\( L_1 = 80 \, \text{ft} \)[/tex]
- Diameter of the first wire [tex]\( D_1 = \frac{1}{8} \, \text{in} \)[/tex]
- Resistance of the first wire [tex]\( R_1 = \frac{1}{2} \, \text{ohm} \)[/tex]
Using the relationship:
[tex]\[ R_1 = k \frac{L_1}{D_1^2} \][/tex]
Substitute the given values into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\left(\frac{1}{8}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{8}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{8}\right)^2 = \frac{1}{64} \][/tex]
Now substitute this back into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\frac{1}{64}} \][/tex]
Simplify the fraction:
[tex]\[ k = \frac{1}{2} \cdot \frac{1}{80} \cdot 64 \][/tex]
[tex]\[ k = 0.5 \cdot 64 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} = 32 \cdot 0.0125 = 0.4 \][/tex]
Step 2: Determine the resistance of the second wire
We are given the second set of conditions:
- Length of the second wire [tex]\( L_2 = 120 \, \text{ft} \)[/tex]
- Diameter of the second wire [tex]\( D_2 = \frac{1}{4} \, \text{in} \)[/tex]
We need to find the resistance [tex]\( R_2 \)[/tex] for the second wire using the same relationship:
[tex]\[ R_2 = k \frac{L_2}{D_2^2} \][/tex]
Using the calculated [tex]\( k = 0.4 \)[/tex]:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\left(\frac{1}{4}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{4} \right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1}{16} \][/tex]
Substitute this back into the equation:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\frac{1}{16}} \][/tex]
Simplify the fraction:
[tex]\[ R_2 = 0.00009765625 \cdot 120 \cdot 16 \][/tex]
[tex]\[ R_2 = 0.00009765625 \cdot 1920 \][/tex]
[tex]\[ R_2 = 0.1875 \][/tex]
So, the resistance in a piece of the same type of wire that is [tex]\(120 \, \text{ft}\)[/tex] long and has a diameter of [tex]\(\frac{1}{4} \, \text{in}\)[/tex] is [tex]\(0.1875 \, \text{ohms}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.