At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let’s go through the solution step-by-step.
We are given that the electric resistance [tex]\( R \)[/tex] of a wire varies directly with its length [tex]\( L \)[/tex] and inversely with the square of its diameter [tex]\( D \)[/tex]. This relationship can be represented mathematically as:
[tex]\[ R = k \frac{L}{D^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
Step 1: Determine the constant of proportionality (k)
We are given the initial conditions:
- Length of the first wire [tex]\( L_1 = 80 \, \text{ft} \)[/tex]
- Diameter of the first wire [tex]\( D_1 = \frac{1}{8} \, \text{in} \)[/tex]
- Resistance of the first wire [tex]\( R_1 = \frac{1}{2} \, \text{ohm} \)[/tex]
Using the relationship:
[tex]\[ R_1 = k \frac{L_1}{D_1^2} \][/tex]
Substitute the given values into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\left(\frac{1}{8}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{8}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{8}\right)^2 = \frac{1}{64} \][/tex]
Now substitute this back into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\frac{1}{64}} \][/tex]
Simplify the fraction:
[tex]\[ k = \frac{1}{2} \cdot \frac{1}{80} \cdot 64 \][/tex]
[tex]\[ k = 0.5 \cdot 64 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} = 32 \cdot 0.0125 = 0.4 \][/tex]
Step 2: Determine the resistance of the second wire
We are given the second set of conditions:
- Length of the second wire [tex]\( L_2 = 120 \, \text{ft} \)[/tex]
- Diameter of the second wire [tex]\( D_2 = \frac{1}{4} \, \text{in} \)[/tex]
We need to find the resistance [tex]\( R_2 \)[/tex] for the second wire using the same relationship:
[tex]\[ R_2 = k \frac{L_2}{D_2^2} \][/tex]
Using the calculated [tex]\( k = 0.4 \)[/tex]:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\left(\frac{1}{4}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{4} \right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1}{16} \][/tex]
Substitute this back into the equation:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\frac{1}{16}} \][/tex]
Simplify the fraction:
[tex]\[ R_2 = 0.00009765625 \cdot 120 \cdot 16 \][/tex]
[tex]\[ R_2 = 0.00009765625 \cdot 1920 \][/tex]
[tex]\[ R_2 = 0.1875 \][/tex]
So, the resistance in a piece of the same type of wire that is [tex]\(120 \, \text{ft}\)[/tex] long and has a diameter of [tex]\(\frac{1}{4} \, \text{in}\)[/tex] is [tex]\(0.1875 \, \text{ohms}\)[/tex].
We are given that the electric resistance [tex]\( R \)[/tex] of a wire varies directly with its length [tex]\( L \)[/tex] and inversely with the square of its diameter [tex]\( D \)[/tex]. This relationship can be represented mathematically as:
[tex]\[ R = k \frac{L}{D^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
Step 1: Determine the constant of proportionality (k)
We are given the initial conditions:
- Length of the first wire [tex]\( L_1 = 80 \, \text{ft} \)[/tex]
- Diameter of the first wire [tex]\( D_1 = \frac{1}{8} \, \text{in} \)[/tex]
- Resistance of the first wire [tex]\( R_1 = \frac{1}{2} \, \text{ohm} \)[/tex]
Using the relationship:
[tex]\[ R_1 = k \frac{L_1}{D_1^2} \][/tex]
Substitute the given values into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\left(\frac{1}{8}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{8}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{8}\right)^2 = \frac{1}{64} \][/tex]
Now substitute this back into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\frac{1}{64}} \][/tex]
Simplify the fraction:
[tex]\[ k = \frac{1}{2} \cdot \frac{1}{80} \cdot 64 \][/tex]
[tex]\[ k = 0.5 \cdot 64 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} = 32 \cdot 0.0125 = 0.4 \][/tex]
Step 2: Determine the resistance of the second wire
We are given the second set of conditions:
- Length of the second wire [tex]\( L_2 = 120 \, \text{ft} \)[/tex]
- Diameter of the second wire [tex]\( D_2 = \frac{1}{4} \, \text{in} \)[/tex]
We need to find the resistance [tex]\( R_2 \)[/tex] for the second wire using the same relationship:
[tex]\[ R_2 = k \frac{L_2}{D_2^2} \][/tex]
Using the calculated [tex]\( k = 0.4 \)[/tex]:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\left(\frac{1}{4}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{4} \right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1}{16} \][/tex]
Substitute this back into the equation:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\frac{1}{16}} \][/tex]
Simplify the fraction:
[tex]\[ R_2 = 0.00009765625 \cdot 120 \cdot 16 \][/tex]
[tex]\[ R_2 = 0.00009765625 \cdot 1920 \][/tex]
[tex]\[ R_2 = 0.1875 \][/tex]
So, the resistance in a piece of the same type of wire that is [tex]\(120 \, \text{ft}\)[/tex] long and has a diameter of [tex]\(\frac{1}{4} \, \text{in}\)[/tex] is [tex]\(0.1875 \, \text{ohms}\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.