Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let’s go through the solution step-by-step.
We are given that the electric resistance [tex]\( R \)[/tex] of a wire varies directly with its length [tex]\( L \)[/tex] and inversely with the square of its diameter [tex]\( D \)[/tex]. This relationship can be represented mathematically as:
[tex]\[ R = k \frac{L}{D^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
Step 1: Determine the constant of proportionality (k)
We are given the initial conditions:
- Length of the first wire [tex]\( L_1 = 80 \, \text{ft} \)[/tex]
- Diameter of the first wire [tex]\( D_1 = \frac{1}{8} \, \text{in} \)[/tex]
- Resistance of the first wire [tex]\( R_1 = \frac{1}{2} \, \text{ohm} \)[/tex]
Using the relationship:
[tex]\[ R_1 = k \frac{L_1}{D_1^2} \][/tex]
Substitute the given values into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\left(\frac{1}{8}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{8}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{8}\right)^2 = \frac{1}{64} \][/tex]
Now substitute this back into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\frac{1}{64}} \][/tex]
Simplify the fraction:
[tex]\[ k = \frac{1}{2} \cdot \frac{1}{80} \cdot 64 \][/tex]
[tex]\[ k = 0.5 \cdot 64 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} = 32 \cdot 0.0125 = 0.4 \][/tex]
Step 2: Determine the resistance of the second wire
We are given the second set of conditions:
- Length of the second wire [tex]\( L_2 = 120 \, \text{ft} \)[/tex]
- Diameter of the second wire [tex]\( D_2 = \frac{1}{4} \, \text{in} \)[/tex]
We need to find the resistance [tex]\( R_2 \)[/tex] for the second wire using the same relationship:
[tex]\[ R_2 = k \frac{L_2}{D_2^2} \][/tex]
Using the calculated [tex]\( k = 0.4 \)[/tex]:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\left(\frac{1}{4}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{4} \right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1}{16} \][/tex]
Substitute this back into the equation:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\frac{1}{16}} \][/tex]
Simplify the fraction:
[tex]\[ R_2 = 0.00009765625 \cdot 120 \cdot 16 \][/tex]
[tex]\[ R_2 = 0.00009765625 \cdot 1920 \][/tex]
[tex]\[ R_2 = 0.1875 \][/tex]
So, the resistance in a piece of the same type of wire that is [tex]\(120 \, \text{ft}\)[/tex] long and has a diameter of [tex]\(\frac{1}{4} \, \text{in}\)[/tex] is [tex]\(0.1875 \, \text{ohms}\)[/tex].
We are given that the electric resistance [tex]\( R \)[/tex] of a wire varies directly with its length [tex]\( L \)[/tex] and inversely with the square of its diameter [tex]\( D \)[/tex]. This relationship can be represented mathematically as:
[tex]\[ R = k \frac{L}{D^2} \][/tex]
where [tex]\( k \)[/tex] is a constant of proportionality.
Step 1: Determine the constant of proportionality (k)
We are given the initial conditions:
- Length of the first wire [tex]\( L_1 = 80 \, \text{ft} \)[/tex]
- Diameter of the first wire [tex]\( D_1 = \frac{1}{8} \, \text{in} \)[/tex]
- Resistance of the first wire [tex]\( R_1 = \frac{1}{2} \, \text{ohm} \)[/tex]
Using the relationship:
[tex]\[ R_1 = k \frac{L_1}{D_1^2} \][/tex]
Substitute the given values into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\left(\frac{1}{8}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{8}\right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{8}\right)^2 = \frac{1}{64} \][/tex]
Now substitute this back into the equation:
[tex]\[ \frac{1}{2} = k \frac{80}{\frac{1}{64}} \][/tex]
Simplify the fraction:
[tex]\[ k = \frac{1}{2} \cdot \frac{1}{80} \cdot 64 \][/tex]
[tex]\[ k = 0.5 \cdot 64 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} \][/tex]
[tex]\[ k = 32 \cdot \frac{1}{80} = 32 \cdot 0.0125 = 0.4 \][/tex]
Step 2: Determine the resistance of the second wire
We are given the second set of conditions:
- Length of the second wire [tex]\( L_2 = 120 \, \text{ft} \)[/tex]
- Diameter of the second wire [tex]\( D_2 = \frac{1}{4} \, \text{in} \)[/tex]
We need to find the resistance [tex]\( R_2 \)[/tex] for the second wire using the same relationship:
[tex]\[ R_2 = k \frac{L_2}{D_2^2} \][/tex]
Using the calculated [tex]\( k = 0.4 \)[/tex]:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\left(\frac{1}{4}\right)^2} \][/tex]
Calculate [tex]\( \left(\frac{1}{4} \right)^2 \)[/tex]:
[tex]\[ \left(\frac{1}{4}\right)^2 = \frac{1}{16} \][/tex]
Substitute this back into the equation:
[tex]\[ R_2 = 0.00009765625 \frac{120}{\frac{1}{16}} \][/tex]
Simplify the fraction:
[tex]\[ R_2 = 0.00009765625 \cdot 120 \cdot 16 \][/tex]
[tex]\[ R_2 = 0.00009765625 \cdot 1920 \][/tex]
[tex]\[ R_2 = 0.1875 \][/tex]
So, the resistance in a piece of the same type of wire that is [tex]\(120 \, \text{ft}\)[/tex] long and has a diameter of [tex]\(\frac{1}{4} \, \text{in}\)[/tex] is [tex]\(0.1875 \, \text{ohms}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.