At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To calculate the standard deviation of the given credit scores, we will follow a series of steps:
1. List the credit scores:
[tex]\[ 697.6, 780.5, 746.8, 676.5, 689.8 \][/tex]
2. Calculate the mean (average) of the credit scores:
The mean [tex]\(\mu\)[/tex] of a set of values is given by:
[tex]\[ \mu = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
Here, [tex]\(n = 5\)[/tex] (the number of customers) and the scores [tex]\(x_i\)[/tex] are the credit scores provided.
[tex]\[ \mu = \frac{697.6 + 780.5 + 746.8 + 676.5 + 689.8}{5} = 718.24 \][/tex]
3. Calculate the deviations from the mean for each credit score:
Each deviation is calculated as [tex]\(x_i - \mu\)[/tex], where [tex]\(x_i\)[/tex] is each credit score.
[tex]\[ 697.6 - 718.24 = -20.64 \][/tex]
[tex]\[ 780.5 - 718.24 = 62.26 \][/tex]
[tex]\[ 746.8 - 718.24 = 28.56 \][/tex]
[tex]\[ 676.5 - 718.24 = -41.74 \][/tex]
[tex]\[ 689.8 - 718.24 = -28.44 \][/tex]
4. Square each deviation:
[tex]\[ (-20.64)^2 = 426.0096 \][/tex]
[tex]\[ (62.26)^2 = 3876.3076 \][/tex]
[tex]\[ (28.56)^2 = 815.6736 \][/tex]
[tex]\[ (-41.74)^2 = 1742.2276 \][/tex]
[tex]\[ (-28.44)^2 = 808.8336 \][/tex]
5. Calculate the variance ([tex]\(\sigma^2\)[/tex]) by taking the mean of these squared deviations:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n} \][/tex]
[tex]\[ \sigma^2 = \frac{426.0096 + 3876.3076 + 815.6736 + 1742.2276 + 808.8336}{5} = 1533.8104 \][/tex]
6. Calculate the standard deviation ([tex]\(\sigma\)[/tex]), which is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} = \sqrt{1533.8104} \approx 39.16 \][/tex]
Therefore, the standard deviation of the credit scores is approximately [tex]\( \boxed{39.16} \)[/tex].
1. List the credit scores:
[tex]\[ 697.6, 780.5, 746.8, 676.5, 689.8 \][/tex]
2. Calculate the mean (average) of the credit scores:
The mean [tex]\(\mu\)[/tex] of a set of values is given by:
[tex]\[ \mu = \frac{\sum_{i=1}^{n} x_i}{n} \][/tex]
Here, [tex]\(n = 5\)[/tex] (the number of customers) and the scores [tex]\(x_i\)[/tex] are the credit scores provided.
[tex]\[ \mu = \frac{697.6 + 780.5 + 746.8 + 676.5 + 689.8}{5} = 718.24 \][/tex]
3. Calculate the deviations from the mean for each credit score:
Each deviation is calculated as [tex]\(x_i - \mu\)[/tex], where [tex]\(x_i\)[/tex] is each credit score.
[tex]\[ 697.6 - 718.24 = -20.64 \][/tex]
[tex]\[ 780.5 - 718.24 = 62.26 \][/tex]
[tex]\[ 746.8 - 718.24 = 28.56 \][/tex]
[tex]\[ 676.5 - 718.24 = -41.74 \][/tex]
[tex]\[ 689.8 - 718.24 = -28.44 \][/tex]
4. Square each deviation:
[tex]\[ (-20.64)^2 = 426.0096 \][/tex]
[tex]\[ (62.26)^2 = 3876.3076 \][/tex]
[tex]\[ (28.56)^2 = 815.6736 \][/tex]
[tex]\[ (-41.74)^2 = 1742.2276 \][/tex]
[tex]\[ (-28.44)^2 = 808.8336 \][/tex]
5. Calculate the variance ([tex]\(\sigma^2\)[/tex]) by taking the mean of these squared deviations:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n} \][/tex]
[tex]\[ \sigma^2 = \frac{426.0096 + 3876.3076 + 815.6736 + 1742.2276 + 808.8336}{5} = 1533.8104 \][/tex]
6. Calculate the standard deviation ([tex]\(\sigma\)[/tex]), which is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} = \sqrt{1533.8104} \approx 39.16 \][/tex]
Therefore, the standard deviation of the credit scores is approximately [tex]\( \boxed{39.16} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.