Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the equation of a line parallel to the line [tex]$y + 5 = \frac{7}{5}(x - 16)$[/tex] that goes through the point [tex]$(14, 0)$[/tex]?

[tex]\[
\begin{array}{l}
A. \ y = \frac{7}{5}x + \frac{62}{7} \\
B. \ y = \frac{7}{5}x + 14 \\
C. \ y = \frac{7}{5}x - \frac{98}{5} \\
\end{array}
\][/tex]

D. None of these are correct.


Sagot :

To determine the equation of a line parallel to the line given by [tex]\( y + 5 = \frac{7}{5}(x - 16) \)[/tex] that passes through the point [tex]\((14, 0)\)[/tex], follow these steps:

### Step 1: Convert the Given Line into Slope-Intercept Form
First, we need to convert the equation [tex]\( y + 5 = \frac{7}{5}(x - 16) \)[/tex] into the slope-intercept form, [tex]\( y = mx + b \)[/tex].

1. Distribute the [tex]\(\frac{7}{5}\)[/tex] on the right-hand side:
[tex]\[ y + 5 = \frac{7}{5}x - \frac{7}{5} \cdot 16 \][/tex]

2. Simplify the constants:
[tex]\[ y + 5 = \frac{7}{5}x - \frac{112}{5} \][/tex]

3. Isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{7}{5}x - \frac{112}{5} - 5 \][/tex]

4. Combine like terms:
[tex]\[ y = \frac{7}{5}x - \left(\frac{112}{5} + \frac{25}{5}\right) \][/tex]
[tex]\[ y = \frac{7}{5}x - \frac{137}{5} \][/tex]

Therefore, the slope [tex]\( m \)[/tex] of the line is [tex]\(\frac{7}{5} \)[/tex].

### Step 2: Use the Point-Slope Form to Find the New Line
Since parallel lines have the same slope, the slope of the new line is also [tex]\(\frac{7}{5}\)[/tex]. We use the point [tex]\((14, 0)\)[/tex] and the point-slope form of a line [tex]\( y - y_1 = m(x - x_1) \)[/tex]:

1. Plugging in the slope [tex]\( m = \frac{7}{5} \)[/tex] and the point [tex]\((14, 0)\)[/tex]:
[tex]\[ y - 0 = \frac{7}{5}(x - 14) \][/tex]

2. Simplifying:
[tex]\[ y = \frac{7}{5}x - \frac{7}{5} \cdot 14 \][/tex]

### Step 3: Calculate the Intercept
1. Simplify the y-intercept calculation:
[tex]\[ y = \frac{7}{5}x - \frac{98}{5} \][/tex]

### Answer
The equation of the new line, parallel to the given line and passing through the point [tex]\((14, 0)\)[/tex], is:

[tex]\[ \boxed{y = \frac{7}{5}x - \frac{98}{5}} \][/tex]

So the correct answer is:
[tex]\[ y = \frac{7}{5}x - \frac{98}{5} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.