Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the equation of a line parallel to the line [tex]y = \frac{4}{3}x - 16[/tex] that goes through the point [tex](-12, 0)[/tex]?

A. [tex]y = \frac{4}{3}x - 12[/tex]
B. [tex]y = \frac{4}{3}x + 9[/tex]
C. [tex]y = \frac{4}{3}x + 16[/tex]
D. None of these are correct.


Sagot :

Certainly! Let's go through the steps to find the equation of a line parallel to the line [tex]\( y = \frac{4}{3}x - 16 \)[/tex] that passes through the point [tex]\((-12, 0)\)[/tex].

### Step-by-Step Solution:

1. Identify the Slope:
- The original line is given by [tex]\( y = \frac{4}{3}x - 16 \)[/tex].
- The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- From the given line equation, the slope ([tex]\( m \)[/tex]) is [tex]\( \frac{4}{3} \)[/tex].

2. Understand Parallel Lines:
- Lines that are parallel have identical slopes.
- Therefore, the slope of the parallel line is also [tex]\( \frac{4}{3} \)[/tex].

3. Find the Y-Intercept of the New Line:
- The new line must pass through the point [tex]\((-12, 0)\)[/tex].
- Using the point-slope form of the line equation [tex]\( y = mx + b \)[/tex], we will substitute the given point [tex]\((-12, 0)\)[/tex] into the equation to find the y-intercept ([tex]\( b \)[/tex]).
- So, [tex]\( y = \frac{4}{3}x + b \)[/tex].
- Substitute [tex]\( x = -12 \)[/tex] and [tex]\( y = 0 \)[/tex]:

[tex]\[ 0 = \frac{4}{3}(-12) + b \][/tex]

4. Solve for [tex]\( b \)[/tex]:
- Calculate [tex]\( \frac{4}{3} \times (-12) \)[/tex]:

[tex]\[ \frac{4}{3} \times (-12) = -16 \][/tex]

- Now, solve for [tex]\( b \)[/tex]:

[tex]\[ 0 = -16 + b \][/tex]

[tex]\[ b = 16 \][/tex]

5. Write the Equation of the New Line:
- Now we know the slope ([tex]\( \frac{4}{3} \)[/tex]) and the y-intercept ([tex]\( 16 \)[/tex]).
- Therefore, the equation of the new line is:

[tex]\[ y = \frac{4}{3}x + 16 \][/tex]

Among the provided options, none match the correct equation. Thus, the equation of the line parallel to [tex]\( y = \frac{4}{3}x - 16 \)[/tex] and passing through [tex]\((-12, 0)\)[/tex] is [tex]\( y = \frac{4}{3}x + 16 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.