Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the equation of a line, in standard form, parallel to the line [tex]$y = 8x - 1$[/tex] that goes through the point [tex]$(0,2)$[/tex]?

A. [tex]8x + y = 2[/tex]
B. [tex]8x + y = -2[/tex]
C. [tex]8x - y = -2[/tex]
D. None of these are correct


Sagot :

To determine the equation of a line parallel to the line [tex]\(y = 8x - 1\)[/tex] that passes through the point [tex]\((0, 2)\)[/tex], we need to follow these steps:

1. Identify the slope of the given line:
The given line is [tex]\(y = 8x - 1\)[/tex]. The slope-intercept form of a line is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
Here, the slope [tex]\(m\)[/tex] is 8.

2. Use the point-slope form of the equation of a line:
The point-slope form is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is the point through which the line passes.
We are given the point [tex]\((0, 2)\)[/tex].

3. Substitute the point [tex]\((0, 2)\)[/tex] and the slope [tex]\(8\)[/tex] into the point-slope form:
[tex]\[ y - 2 = 8(x - 0) \][/tex]

4. Simplify the equation:
[tex]\[ y - 2 = 8x \][/tex]
[tex]\[ y = 8x + 2 \][/tex]

5. Convert this equation to standard form [tex]\(Ax + By = C\)[/tex]:
We need to rearrange [tex]\(y = 8x + 2\)[/tex] into the form [tex]\(Ax + By = C\)[/tex].

Subtract [tex]\(8x\)[/tex] from both sides to get:
[tex]\[ -8x + y = 2 \][/tex]

6. Adjust the coefficients to match the standard form criteria (A should be positive):
Multiply the entire equation by [tex]\(-1\)[/tex]:
[tex]\[ 8x - y = -2 \][/tex]

Therefore, the equation of the line in standard form, parallel to [tex]\(y = 8x - 1\)[/tex] and passing through the point [tex]\((0, 2)\)[/tex], is:
[tex]\[ 8x - y = -2 \][/tex]

So, the correct answer is:
[tex]\[ 8x - y = -2 \][/tex]