Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What is the domain of the function [tex]$y=\ln \left(\frac{-x+3}{2}\right)$[/tex]?

A. [tex]$x\ \textless \ 2$[/tex]
B. [tex][tex]$x\ \textgreater \ 2$[/tex][/tex]
C. [tex]$x\ \textless \ 3$[/tex]
D. [tex]$x\ \textgreater \ 3$[/tex]


Sagot :

To determine the domain of the function [tex]\( y = \ln \left( \frac{-x + 3}{2} \right) \)[/tex], we must ensure that the argument of the logarithmic function is positive, because the natural logarithm, [tex]\( \ln(z) \)[/tex], is defined only for [tex]\( z > 0 \)[/tex].

Let's start by setting up the inequality:

[tex]\[ \frac{-x + 3}{2} > 0 \][/tex]

To solve this inequality:

1. Multiply both sides of the inequality by 2 to clear the fraction:

[tex]\[ -x + 3 > 0 \][/tex]

2. Next, solve for [tex]\( x \)[/tex] by isolating it on one side of the inequality:

[tex]\[ -x > -3 \][/tex]

3. Divide both sides by -1, and remember to reverse the inequality sign when dividing by a negative number:

[tex]\[ x < 3 \][/tex]

Thus, the domain of the function [tex]\( y = \ln \left( \frac{-x + 3}{2} \right) \)[/tex] is all [tex]\( x \)[/tex] such that [tex]\( x < 3 \)[/tex].

Therefore, the correct answer is:

[tex]\[ x < 3 \][/tex]