Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the equation of a line that is parallel to the given line [tex]\( y = 8x - 1 \)[/tex] and passes through the point [tex]\((-2, 2)\)[/tex], we can follow these steps:
1. Identify the Slope of the Given Line:
The equation of the given line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept. From the equation [tex]\( y = 8x - 1 \)[/tex], we see that the slope [tex]\( m \)[/tex] is 8.
2. Use the Point-Slope Form:
The point-slope form of a line equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope. Here, [tex]\((x_1, y_1) = (-2, 2)\)[/tex] and [tex]\( m = 8 \)[/tex].
Plugging in these values, we get:
[tex]\[ y - 2 = 8(x + 2) \][/tex]
3. Simplify the Equation:
Expand and simplify the equation:
[tex]\[ y - 2 = 8x + 16 \][/tex]
[tex]\[ y = 8x + 18 \][/tex]
4. Convert to Standard Form:
The standard form of a linear equation is [tex]\( Ax + By = C \)[/tex]. We rearrange the simplified equation [tex]\( y = 8x + 18 \)[/tex] into this form:
[tex]\[ y = 8x + 18 \][/tex]
Subtract [tex]\( 8x \)[/tex] from both sides:
[tex]\[ -8x + y = 18 \][/tex]
5. Identify the Correct Option:
The resulting equation [tex]\(-8x + y = 18\)[/tex] matches the second option:
[tex]\[ -8x + y = 18 \][/tex]
Therefore, the equation of the line parallel to [tex]\( y = 8x - 1 \)[/tex] that passes through the point [tex]\((-2, 2)\)[/tex] is [tex]\(-8x + y = 18\)[/tex]. The correct answer is:
[tex]\[ -8 x + y = 18 \][/tex]
1. Identify the Slope of the Given Line:
The equation of the given line is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept. From the equation [tex]\( y = 8x - 1 \)[/tex], we see that the slope [tex]\( m \)[/tex] is 8.
2. Use the Point-Slope Form:
The point-slope form of a line equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope. Here, [tex]\((x_1, y_1) = (-2, 2)\)[/tex] and [tex]\( m = 8 \)[/tex].
Plugging in these values, we get:
[tex]\[ y - 2 = 8(x + 2) \][/tex]
3. Simplify the Equation:
Expand and simplify the equation:
[tex]\[ y - 2 = 8x + 16 \][/tex]
[tex]\[ y = 8x + 18 \][/tex]
4. Convert to Standard Form:
The standard form of a linear equation is [tex]\( Ax + By = C \)[/tex]. We rearrange the simplified equation [tex]\( y = 8x + 18 \)[/tex] into this form:
[tex]\[ y = 8x + 18 \][/tex]
Subtract [tex]\( 8x \)[/tex] from both sides:
[tex]\[ -8x + y = 18 \][/tex]
5. Identify the Correct Option:
The resulting equation [tex]\(-8x + y = 18\)[/tex] matches the second option:
[tex]\[ -8x + y = 18 \][/tex]
Therefore, the equation of the line parallel to [tex]\( y = 8x - 1 \)[/tex] that passes through the point [tex]\((-2, 2)\)[/tex] is [tex]\(-8x + y = 18\)[/tex]. The correct answer is:
[tex]\[ -8 x + y = 18 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.