Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the true solution to the equation [tex]\(2 \ln(4x) = 2 \ln(8)\)[/tex], let's proceed step-by-step.
1. Simplify the Equation:
Start by dividing both sides of the equation by 2:
[tex]\[ \ln(4x) = \ln(8) \][/tex]
2. Use the Property of Logarithms:
Since the natural logarithm function [tex]\(\ln\)[/tex] is one-to-one, if [tex]\(\ln(a) = \ln(b)\)[/tex], then [tex]\(a = b\)[/tex]. Hence:
[tex]\[ 4x = 8 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
Now, solve the equation [tex]\(4x = 8\)[/tex]:
[tex]\[ x = \frac{8}{4} \][/tex]
[tex]\[ x = 2 \][/tex]
4. Check the Multiple Choice Options:
Among the given choices:
- [tex]\(x = -4\)[/tex]
- [tex]\(x = -2\)[/tex]
- [tex]\(x = 2\)[/tex]
- [tex]\(x = 4\)[/tex]
The correct value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(x = 2\)[/tex].
Therefore, the true solution to the equation [tex]\(2 \ln(4x) = 2 \ln(8)\)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
1. Simplify the Equation:
Start by dividing both sides of the equation by 2:
[tex]\[ \ln(4x) = \ln(8) \][/tex]
2. Use the Property of Logarithms:
Since the natural logarithm function [tex]\(\ln\)[/tex] is one-to-one, if [tex]\(\ln(a) = \ln(b)\)[/tex], then [tex]\(a = b\)[/tex]. Hence:
[tex]\[ 4x = 8 \][/tex]
3. Solve for [tex]\(x\)[/tex]:
Now, solve the equation [tex]\(4x = 8\)[/tex]:
[tex]\[ x = \frac{8}{4} \][/tex]
[tex]\[ x = 2 \][/tex]
4. Check the Multiple Choice Options:
Among the given choices:
- [tex]\(x = -4\)[/tex]
- [tex]\(x = -2\)[/tex]
- [tex]\(x = 2\)[/tex]
- [tex]\(x = 4\)[/tex]
The correct value of [tex]\(x\)[/tex] that satisfies the equation is [tex]\(x = 2\)[/tex].
Therefore, the true solution to the equation [tex]\(2 \ln(4x) = 2 \ln(8)\)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.