Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's find the logarithmic form of the equation [tex]\( 25 = 5^2 \)[/tex].
### Step-by-Step Solution:
1. Identify the Base, Exponent, and Result:
- Base: The base of the exponentiation is [tex]\( 5 \)[/tex].
- Exponent: The exponent is [tex]\( 2 \)[/tex].
- Result: The result of the exponentiation is [tex]\( 25 \)[/tex].
2. Apply the Definition of Logarithms:
- A logarithm is an exponent that the base must be raised to in order to get the result.
- The general form for logarithms is:
[tex]\[ \log_b a = c \][/tex]
This reads as "logarithm of [tex]\( a \)[/tex] with base [tex]\( b \)[/tex] is [tex]\( c \)[/tex]"
3. Match Our Equation to Logarithmic Form:
- Using [tex]\( 25 = 5^2 \)[/tex]:
[tex]\[ \log_5 25 = 2 \][/tex]
4. Choose the Correct Option:
- Looking at the given choices:
1. [tex]\( \log_2 5 = 25 \)[/tex] - This is incorrect.
2. [tex]\( \log_{25} 2 = 5 \)[/tex] - This is incorrect.
3. [tex]\( \log_5 25 = 2 \)[/tex] - This is correct.
4. [tex]\( \log_5 2 = 25 \)[/tex] - This is incorrect.
Therefore, the correct logarithmic form of [tex]\( 25 = 5^2 \)[/tex] is:
[tex]\[ \log_5 25 = 2 \][/tex]
Thus, the corresponding correct choice is:
[tex]\[ 3. \log_5 25 = 2 \][/tex]
### Step-by-Step Solution:
1. Identify the Base, Exponent, and Result:
- Base: The base of the exponentiation is [tex]\( 5 \)[/tex].
- Exponent: The exponent is [tex]\( 2 \)[/tex].
- Result: The result of the exponentiation is [tex]\( 25 \)[/tex].
2. Apply the Definition of Logarithms:
- A logarithm is an exponent that the base must be raised to in order to get the result.
- The general form for logarithms is:
[tex]\[ \log_b a = c \][/tex]
This reads as "logarithm of [tex]\( a \)[/tex] with base [tex]\( b \)[/tex] is [tex]\( c \)[/tex]"
3. Match Our Equation to Logarithmic Form:
- Using [tex]\( 25 = 5^2 \)[/tex]:
[tex]\[ \log_5 25 = 2 \][/tex]
4. Choose the Correct Option:
- Looking at the given choices:
1. [tex]\( \log_2 5 = 25 \)[/tex] - This is incorrect.
2. [tex]\( \log_{25} 2 = 5 \)[/tex] - This is incorrect.
3. [tex]\( \log_5 25 = 2 \)[/tex] - This is correct.
4. [tex]\( \log_5 2 = 25 \)[/tex] - This is incorrect.
Therefore, the correct logarithmic form of [tex]\( 25 = 5^2 \)[/tex] is:
[tex]\[ \log_5 25 = 2 \][/tex]
Thus, the corresponding correct choice is:
[tex]\[ 3. \log_5 25 = 2 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.