Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's find the logarithmic form of the equation [tex]\( 25 = 5^2 \)[/tex].
### Step-by-Step Solution:
1. Identify the Base, Exponent, and Result:
- Base: The base of the exponentiation is [tex]\( 5 \)[/tex].
- Exponent: The exponent is [tex]\( 2 \)[/tex].
- Result: The result of the exponentiation is [tex]\( 25 \)[/tex].
2. Apply the Definition of Logarithms:
- A logarithm is an exponent that the base must be raised to in order to get the result.
- The general form for logarithms is:
[tex]\[ \log_b a = c \][/tex]
This reads as "logarithm of [tex]\( a \)[/tex] with base [tex]\( b \)[/tex] is [tex]\( c \)[/tex]"
3. Match Our Equation to Logarithmic Form:
- Using [tex]\( 25 = 5^2 \)[/tex]:
[tex]\[ \log_5 25 = 2 \][/tex]
4. Choose the Correct Option:
- Looking at the given choices:
1. [tex]\( \log_2 5 = 25 \)[/tex] - This is incorrect.
2. [tex]\( \log_{25} 2 = 5 \)[/tex] - This is incorrect.
3. [tex]\( \log_5 25 = 2 \)[/tex] - This is correct.
4. [tex]\( \log_5 2 = 25 \)[/tex] - This is incorrect.
Therefore, the correct logarithmic form of [tex]\( 25 = 5^2 \)[/tex] is:
[tex]\[ \log_5 25 = 2 \][/tex]
Thus, the corresponding correct choice is:
[tex]\[ 3. \log_5 25 = 2 \][/tex]
### Step-by-Step Solution:
1. Identify the Base, Exponent, and Result:
- Base: The base of the exponentiation is [tex]\( 5 \)[/tex].
- Exponent: The exponent is [tex]\( 2 \)[/tex].
- Result: The result of the exponentiation is [tex]\( 25 \)[/tex].
2. Apply the Definition of Logarithms:
- A logarithm is an exponent that the base must be raised to in order to get the result.
- The general form for logarithms is:
[tex]\[ \log_b a = c \][/tex]
This reads as "logarithm of [tex]\( a \)[/tex] with base [tex]\( b \)[/tex] is [tex]\( c \)[/tex]"
3. Match Our Equation to Logarithmic Form:
- Using [tex]\( 25 = 5^2 \)[/tex]:
[tex]\[ \log_5 25 = 2 \][/tex]
4. Choose the Correct Option:
- Looking at the given choices:
1. [tex]\( \log_2 5 = 25 \)[/tex] - This is incorrect.
2. [tex]\( \log_{25} 2 = 5 \)[/tex] - This is incorrect.
3. [tex]\( \log_5 25 = 2 \)[/tex] - This is correct.
4. [tex]\( \log_5 2 = 25 \)[/tex] - This is incorrect.
Therefore, the correct logarithmic form of [tex]\( 25 = 5^2 \)[/tex] is:
[tex]\[ \log_5 25 = 2 \][/tex]
Thus, the corresponding correct choice is:
[tex]\[ 3. \log_5 25 = 2 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.