Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Solve the equation:
[tex]\[ 25^{\wedge} x 5^{\wedge} x+2+100=0 \][/tex]

Sagot :

To solve the equation [tex]\( 25^x \cdot 5^{x+2} + 100 = 0 \)[/tex], we'll follow a structured approach to find the values of [tex]\( x \)[/tex]. Here are the steps to solve this equation:

1. Rewrite the given equation for clarity:
[tex]\[ 25^x \cdot 5^{x+2} + 100 = 0 \][/tex]

2. Simplify the exponents:
Recall that [tex]\( 25 = 5^2 \)[/tex]. Hence, we can rewrite [tex]\( 25^x \)[/tex] as [tex]\( (5^2)^x = 5^{2x} \)[/tex].

Substituting this into the equation gives us:
[tex]\[ 5^{2x} \cdot 5^{x+2} + 100 = 0 \][/tex]

3. Combine the exponents:
Using the property of exponents that states [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex], we can combine the powers of 5:
[tex]\[ 5^{2x + (x+2)} + 100 = 0 \][/tex]
Simplifying the exponent, we get:
[tex]\[ 5^{3x+2} + 100 = 0 \][/tex]

4. Isolate the exponential term:
[tex]\[ 5^{3x+2} = -100 \][/tex]

5. Solve for [tex]\( x \)[/tex] using logarithms:
[tex]\[ 5^{3x+2} = -100 \][/tex]

Notice that it is not possible for any real number [tex]\( x \)[/tex] to satisfy this equation because the exponent of a positive base (like 5) to any real power is positive, and hence cannot equal the negative number [tex]\(-100\)[/tex].

However, considering complex solutions, [tex]\( 5^{3x+2} \)[/tex] must be equated to a complex logarithmic expression.

6. Equate the exponents:
To find the solutions in the complex plane, express [tex]\(-100\)[/tex] as a complex exponent. For a general base [tex]\( a \)[/tex] and exponent [tex]\( b \)[/tex]:
[tex]\[ a^b = e^{b \log(a)} \][/tex]

So, we rewrite:
[tex]\[ 5^{3x+2} = e^{(3x+2) \log(5)} \][/tex]

7. Express [tex]\(-100\)[/tex] in exponential form:
We can write [tex]\(-100\)[/tex] as follows:
[tex]\[ -100 = 100 \cdot e^{i \pi (2k + 1)} \quad \text{(since} \; e^{i\pi} = -1\text{ for integer k)} \][/tex]

8. Equate the exponents:
By matching the exponents, we get:
[tex]\[ 3x + 2 = \frac{\log(100) + i\pi (2k+1)}{\log(5)} \][/tex]

9. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(100) + i\pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]

Simplifying the logarithm:
[tex]\[ \log(100) = 2 \log(10) = 2 \log(10) = 2 \log(2 \cdot 5) = 2 (\log(2) + \log(5)) \][/tex]

Hence,
[tex]\[ x = \frac{2 (\log(2) + \log(5)) + i\pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]

10. Simplify the expression:
Solving for [tex]\( x \)[/tex] yields the final complex solutions:
[tex]\[ x = \frac{2 \log(2) + i \pi(2k+1) + 2 \log(5)}{3 \log(5)} - \frac{2}{3} \][/tex]

This condenses to:
[tex]\[ x = \frac{2 \log(2) + 2 \log(5)}{3 \log(5)} + \frac{ i \pi (2k+1)}{3 \log(5)} = \frac{2 (\log(2) + \log(5))}{3 \log(5)} + \frac{ i \pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]

Given full simplification for initial principal value by periodic addition we identify solutions to be:

[tex]\[ \frac{2 \log 2}{3 \log 5} + \frac{I \pi}{\log 5} \quad \text{or} \quad \frac{\log 4 - I \pi}{3 \log 5}, \quad \frac{\log 4 + I \pi}{3 \log 5} \][/tex]

using logs of number manipulations shows principal solutions variants as:
[tex]\((2(\log2)/3 + I\pi)/log5\)[/tex], [tex]\((\log 4 - I \pi)/(3 \log 5)\)[/tex], and, [tex]\(\log4 + I\pi/(3 \log 5)\)[/tex].

Thus, the solution for the equation is:
[tex]\[ x = \frac{(2 \log{2}) + i \pi}{3 \log{5}}, \frac{\log{4} + i \pi}{3 \log{5}}, \quad \frac{\log{4} - i \pi}{3 \log{5}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.