Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the equation [tex]\( 25^x \cdot 5^{x+2} + 100 = 0 \)[/tex], we'll follow a structured approach to find the values of [tex]\( x \)[/tex]. Here are the steps to solve this equation:
1. Rewrite the given equation for clarity:
[tex]\[ 25^x \cdot 5^{x+2} + 100 = 0 \][/tex]
2. Simplify the exponents:
Recall that [tex]\( 25 = 5^2 \)[/tex]. Hence, we can rewrite [tex]\( 25^x \)[/tex] as [tex]\( (5^2)^x = 5^{2x} \)[/tex].
Substituting this into the equation gives us:
[tex]\[ 5^{2x} \cdot 5^{x+2} + 100 = 0 \][/tex]
3. Combine the exponents:
Using the property of exponents that states [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex], we can combine the powers of 5:
[tex]\[ 5^{2x + (x+2)} + 100 = 0 \][/tex]
Simplifying the exponent, we get:
[tex]\[ 5^{3x+2} + 100 = 0 \][/tex]
4. Isolate the exponential term:
[tex]\[ 5^{3x+2} = -100 \][/tex]
5. Solve for [tex]\( x \)[/tex] using logarithms:
[tex]\[ 5^{3x+2} = -100 \][/tex]
Notice that it is not possible for any real number [tex]\( x \)[/tex] to satisfy this equation because the exponent of a positive base (like 5) to any real power is positive, and hence cannot equal the negative number [tex]\(-100\)[/tex].
However, considering complex solutions, [tex]\( 5^{3x+2} \)[/tex] must be equated to a complex logarithmic expression.
6. Equate the exponents:
To find the solutions in the complex plane, express [tex]\(-100\)[/tex] as a complex exponent. For a general base [tex]\( a \)[/tex] and exponent [tex]\( b \)[/tex]:
[tex]\[ a^b = e^{b \log(a)} \][/tex]
So, we rewrite:
[tex]\[ 5^{3x+2} = e^{(3x+2) \log(5)} \][/tex]
7. Express [tex]\(-100\)[/tex] in exponential form:
We can write [tex]\(-100\)[/tex] as follows:
[tex]\[ -100 = 100 \cdot e^{i \pi (2k + 1)} \quad \text{(since} \; e^{i\pi} = -1\text{ for integer k)} \][/tex]
8. Equate the exponents:
By matching the exponents, we get:
[tex]\[ 3x + 2 = \frac{\log(100) + i\pi (2k+1)}{\log(5)} \][/tex]
9. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(100) + i\pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]
Simplifying the logarithm:
[tex]\[ \log(100) = 2 \log(10) = 2 \log(10) = 2 \log(2 \cdot 5) = 2 (\log(2) + \log(5)) \][/tex]
Hence,
[tex]\[ x = \frac{2 (\log(2) + \log(5)) + i\pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]
10. Simplify the expression:
Solving for [tex]\( x \)[/tex] yields the final complex solutions:
[tex]\[ x = \frac{2 \log(2) + i \pi(2k+1) + 2 \log(5)}{3 \log(5)} - \frac{2}{3} \][/tex]
This condenses to:
[tex]\[ x = \frac{2 \log(2) + 2 \log(5)}{3 \log(5)} + \frac{ i \pi (2k+1)}{3 \log(5)} = \frac{2 (\log(2) + \log(5))}{3 \log(5)} + \frac{ i \pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]
Given full simplification for initial principal value by periodic addition we identify solutions to be:
[tex]\[ \frac{2 \log 2}{3 \log 5} + \frac{I \pi}{\log 5} \quad \text{or} \quad \frac{\log 4 - I \pi}{3 \log 5}, \quad \frac{\log 4 + I \pi}{3 \log 5} \][/tex]
using logs of number manipulations shows principal solutions variants as:
[tex]\((2(\log2)/3 + I\pi)/log5\)[/tex], [tex]\((\log 4 - I \pi)/(3 \log 5)\)[/tex], and, [tex]\(\log4 + I\pi/(3 \log 5)\)[/tex].
Thus, the solution for the equation is:
[tex]\[ x = \frac{(2 \log{2}) + i \pi}{3 \log{5}}, \frac{\log{4} + i \pi}{3 \log{5}}, \quad \frac{\log{4} - i \pi}{3 \log{5}} \][/tex]
1. Rewrite the given equation for clarity:
[tex]\[ 25^x \cdot 5^{x+2} + 100 = 0 \][/tex]
2. Simplify the exponents:
Recall that [tex]\( 25 = 5^2 \)[/tex]. Hence, we can rewrite [tex]\( 25^x \)[/tex] as [tex]\( (5^2)^x = 5^{2x} \)[/tex].
Substituting this into the equation gives us:
[tex]\[ 5^{2x} \cdot 5^{x+2} + 100 = 0 \][/tex]
3. Combine the exponents:
Using the property of exponents that states [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex], we can combine the powers of 5:
[tex]\[ 5^{2x + (x+2)} + 100 = 0 \][/tex]
Simplifying the exponent, we get:
[tex]\[ 5^{3x+2} + 100 = 0 \][/tex]
4. Isolate the exponential term:
[tex]\[ 5^{3x+2} = -100 \][/tex]
5. Solve for [tex]\( x \)[/tex] using logarithms:
[tex]\[ 5^{3x+2} = -100 \][/tex]
Notice that it is not possible for any real number [tex]\( x \)[/tex] to satisfy this equation because the exponent of a positive base (like 5) to any real power is positive, and hence cannot equal the negative number [tex]\(-100\)[/tex].
However, considering complex solutions, [tex]\( 5^{3x+2} \)[/tex] must be equated to a complex logarithmic expression.
6. Equate the exponents:
To find the solutions in the complex plane, express [tex]\(-100\)[/tex] as a complex exponent. For a general base [tex]\( a \)[/tex] and exponent [tex]\( b \)[/tex]:
[tex]\[ a^b = e^{b \log(a)} \][/tex]
So, we rewrite:
[tex]\[ 5^{3x+2} = e^{(3x+2) \log(5)} \][/tex]
7. Express [tex]\(-100\)[/tex] in exponential form:
We can write [tex]\(-100\)[/tex] as follows:
[tex]\[ -100 = 100 \cdot e^{i \pi (2k + 1)} \quad \text{(since} \; e^{i\pi} = -1\text{ for integer k)} \][/tex]
8. Equate the exponents:
By matching the exponents, we get:
[tex]\[ 3x + 2 = \frac{\log(100) + i\pi (2k+1)}{\log(5)} \][/tex]
9. Solve for [tex]\( x \)[/tex]:
Isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(100) + i\pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]
Simplifying the logarithm:
[tex]\[ \log(100) = 2 \log(10) = 2 \log(10) = 2 \log(2 \cdot 5) = 2 (\log(2) + \log(5)) \][/tex]
Hence,
[tex]\[ x = \frac{2 (\log(2) + \log(5)) + i\pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]
10. Simplify the expression:
Solving for [tex]\( x \)[/tex] yields the final complex solutions:
[tex]\[ x = \frac{2 \log(2) + i \pi(2k+1) + 2 \log(5)}{3 \log(5)} - \frac{2}{3} \][/tex]
This condenses to:
[tex]\[ x = \frac{2 \log(2) + 2 \log(5)}{3 \log(5)} + \frac{ i \pi (2k+1)}{3 \log(5)} = \frac{2 (\log(2) + \log(5))}{3 \log(5)} + \frac{ i \pi (2k+1)}{3 \log(5)} - \frac{2}{3} \][/tex]
Given full simplification for initial principal value by periodic addition we identify solutions to be:
[tex]\[ \frac{2 \log 2}{3 \log 5} + \frac{I \pi}{\log 5} \quad \text{or} \quad \frac{\log 4 - I \pi}{3 \log 5}, \quad \frac{\log 4 + I \pi}{3 \log 5} \][/tex]
using logs of number manipulations shows principal solutions variants as:
[tex]\((2(\log2)/3 + I\pi)/log5\)[/tex], [tex]\((\log 4 - I \pi)/(3 \log 5)\)[/tex], and, [tex]\(\log4 + I\pi/(3 \log 5)\)[/tex].
Thus, the solution for the equation is:
[tex]\[ x = \frac{(2 \log{2}) + i \pi}{3 \log{5}}, \frac{\log{4} + i \pi}{3 \log{5}}, \quad \frac{\log{4} - i \pi}{3 \log{5}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.